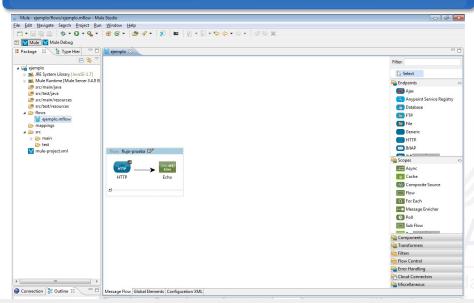
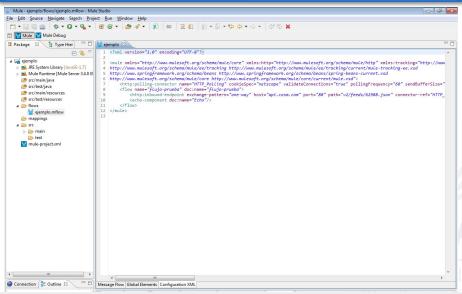
Mule Studio: una herramienta gráfica para Mule ESB Itinerario Formativo de Doctorado 7009

Juan Boubeta Puig

Grupo UCASE de Ingeniería del Software Departamento de Ingeniería Informática 14 de mayo de 2013

- 1 Introducción
- 2 Instalación de Mule Studio
- 3 Visión general de la herramienta
 - Creación de un proyecto Mule Studio
 - Paleta del editor
- 4 Esquema de un flujo típico de Mule
- 5 Caso de estudio


- 1 Introducción
- 2 Instalación de Mule Studio
- 3 Visión general de la herramienta
 - Creación de un provecto Mule Studio
 - Paleta del editor
- 4 Esquema de un flujo típico de Mule
- 5 Caso de estudio


¿Qué es Mule Studio?

- Interfaz gráfica que abstrae al usuario de los detalles más técnicos de Mule ESB.
- En lugar de tener que escribir "a mano" el código XML para crear aplicaciones Mule; Mule Studio se encarga de ello.
- Los elementos necesarios para modelar y configurar aplicaciones Mule se incorporan al canvas del editor mediante drag and drop.
- Una aplicación Studio puede ser incluso desplegada en la nube (véase CloudHub para más información).
- Está basado en Eclipse y proporciona dos entornos de desarrollo que pueden utilizarse para crear aplicaciones Mule:
 - Un editor drag and drop visual.
 - Un editor XML.
- Lo que se desarrolle o configure en uno de los editores se actualizará automáticamente en el otro.

Mule Studio - Editor visual

Mule Studio - Editor XML

- 1 Introducción
- 2 Instalación de Mule Studio
- 3 Visión general de la herramienta
 - Creación de un provecto Mule Studio
 - Paleta del editor
- 4 Esquema de un flujo típico de Mule
- 5 Caso de estudio

Requisitos de software y hardware

Hardware

- 3GB de RAM
- 2GHz de CPU
- 4GB libres de espacio de disco

Software

- Java Runtime Environments:
 - Oracle Java 1.6
 - Oracle Java 1.7
 - IBM Java 1.6
- Sistemas operativos:
 - Windows (32 o 64 bit)
 - Mac OS (32 o 64 bit)
 - Linux (32 o 64 bit)

Pasos para instalar y ejecutar Mule Studio

- Descargar la versión Mule Studio v3.4 para Windows, Linux o Mac: http://www.mulesoft.org/download-mule-esb-community-edition.
- Descomprimir el archivo MuleStudio-for-*.zip en un directorio cuya ruta no sea muy extensa.
- Una vez descomprimido, ejecutar el fichero MuleStudio: MuleStudio.exe (Windows), MuleStudio.app (Mac OSX) o MuleStudio (Linux).

También puede descargarse e instalarse Mule Studio como plugin de Eclipse. Más información en: http://www.mulesoft.org/documentation/display/current/Studio+in+Eclipse

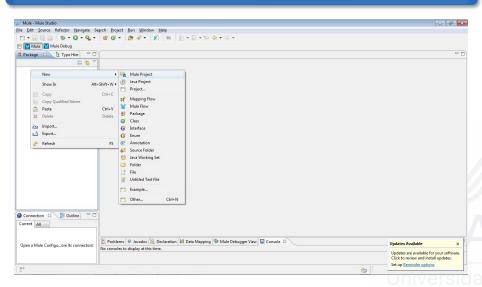
Universida

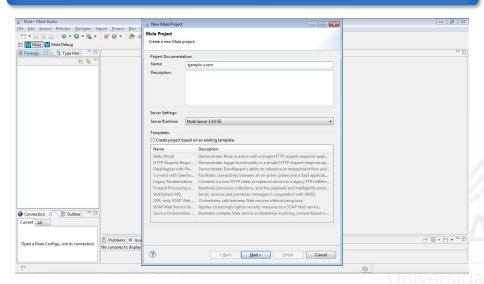
Uso de Mule Studio con sistema de control de versiones

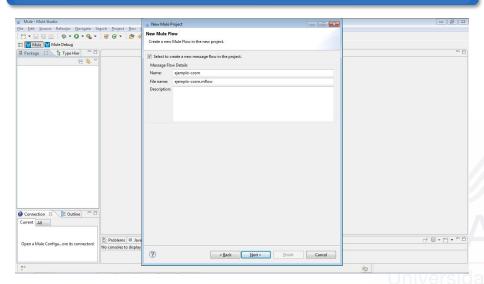
- **Subclipse**: http://www.mulesoft.org/documentation/display/33X/Using+Subversion+with+Studio.
- **Git**: http://www.mulesoft.org/documentation/display/33X/Using+Git+with+Studio.

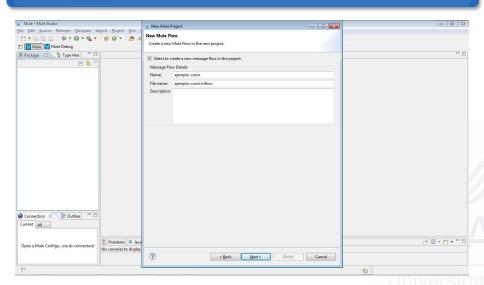
Es necesario registrarse en la web para poder acceder a dicha información.

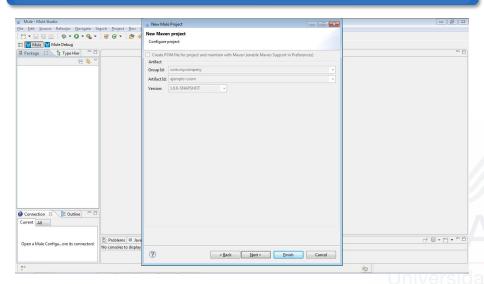
- 1 Introducción
- 2 Instalación de Mule Studio
- 3 Visión general de la herramienta
 - Creación de un proyecto Mule Studio
 - Paleta del editor
- 4 Esquema de un flujo típico de Mule
- 5 Caso de estudio

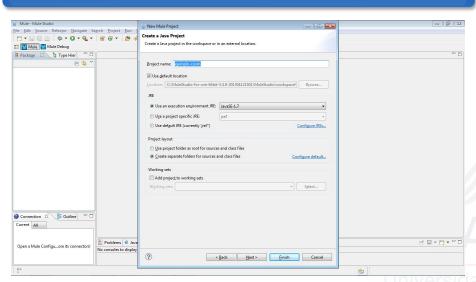


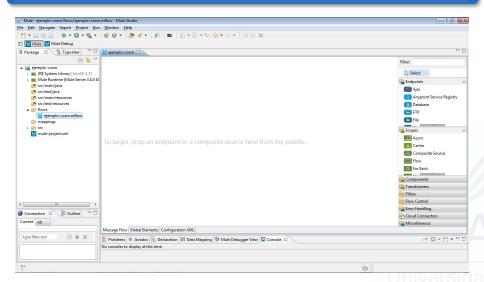

- 1 Introducción
- 2 Instalación de Mule Studio
- 3 Visión general de la herramienta
 - Creación de un proyecto Mule Studio
 - Paleta del editor
- 4 Esquema de un flujo típico de Mule
- 5 Caso de estudio




Creación de un proyecto Mule Studio


New > Mule Project



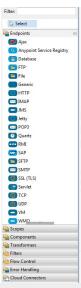

Creación de un proyecto Mule Studio (cont.)

Hacer clic en Finish

Creación de un proyecto Mule Studio (cont.)

Hacer clic en Finish

- 1 Introducción
- 2 Instalación de Mule Studio
- 3 Visión general de la herramienta
 - Creación de un provecto Mule Studio
 - Paleta del editor
- 4 Esquema de un flujo típico de Mule
- 5 Caso de estudio



Endpoints

Permiten que las aplicaciones Mule puedan comunicarse con el "mundo" exterior. Se clasifican en:

Inbound La aplicación recibirá información del exterior.

Outbound La aplicación enviará informacion al exterior.

Scopes

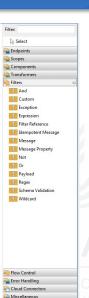
Proporcionan diferentes formas de combinar (agrupar) varios procesadores de mensajes con el objetivo de:

- Mejorar la legibilidad del código XML.
- Implementar procesamiento paralelo.
- Crear secuencias de bloques reusables.

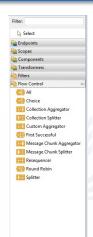
Denominaremos "procesadores de mensajes" a los bloques que permiten filtrar, enriquecer, encaminar o validar los mensajes.

Components

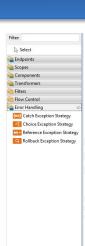
- Añaden funcionalidad a un flujo como logging e impresión por pantalla.
- Además, también facilitan la integración Software as a Service (SaaS) proporcionando "shells" específicos de lenguaje que permiten definir una lógica de negocio con código personalizado para las aplicaciones Mule.
- Un componente recibe, procesa y devuelve mensaies.
- Es un objeto en el que uno de sus métodos será invocado cuando reciba un mensaie.


Transformers

Se encargan de transformar o enriquecer los mensajes (cabecera y cuerpo del mensaje).


Filters

Determinan si un mensaje puede continuar a través del flujo de la aplicación, o si debe rechazarse.


Flow controls

- Especifican cómo los mensajes serán encaminados hacia distintos procesadores de mensajes dentro de un flujo.
- También pueden procesar mensajes (agregación, separación...) antes de encaminarlos a otros procesadores de mensajes.

Error handlers

Ofrecen varios procedimientos para manejar excepciones bajo ciertas circunstancias.

Cloud Connectors

Miscellaneous

Cloud connectors

- Permiten la integración de aplicaciones Mule con aplicaciones web y API de terceros.
- Ejemplos: Salesforce (*Customer Relationship Management*) y Mongo DB (SGBD NoSQL).

- 1 Introducción
- 2 Instalación de Mule Studio
- 3 Visión general de la herramienta
 - Creación de un provecto Mule Studio
 - Paleta del editor
- 4 Esquema de un flujo típico de Mule
- 5 Caso de estudio

Esquema de un flujo típico de Mule I

- **Una fuente de mensajes**: uno o más *endpoints* activan el flujo cada vez que llega un mensaje.
- Un filtro: puede ser embebido en la fuente de mensajes o conectado a esta fuente; debe identificar mensajes inválidos y rechazar su paso al resto del flujo.
- Un transformador: puede convertir los mensajes de entrada en un formato de datos consumible por otros procesadores de mensajes del flujo.
- Un enriquecedor de mensajes: puede añadir información relevante en un mensaje. Por ejemplo, si el mensaje llega solamente con el DNI de una persona, podría añadirse al mensaje su nombre y apellidos.

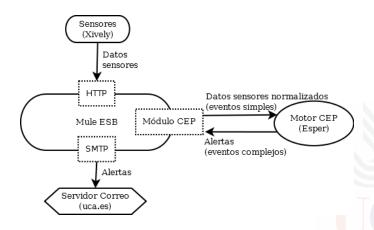
Universida

Esquema de un flujo típico de Mule II

- Un componente: una vez preparado el mensaje para ser procesado, normalmente será enviado a un componente que se encargará de procesarlo de una determinada forma según su contenido. A veces también se utilizan BD externas o API (ej. Salesforce) como cloud connectors.
- 6 Los últimos "pasos" de un flujo pueden ser muy distintos, por ejemplo:
 - Se devuelve una respuesta al emisor original del mensaje.
 - Los resultados del procesamiento son almacenados en una base de datos o enviados a terceros (ej. correo electrónico).

- Introducción
- 2 Instalación de Mule Studio
- 3 Visión general de la herramienta
 - Creación de un provecto Mule Studio
 - Paleta del editor
- 4 Esquema de un flujo típico de Mule
- 5 Caso de estudio

Conceptos previos


Internet de las cosas o Internet of Things (IoT)

- Paradigma emergente que propone el uso de una red de cosas u objetos, como sensores y actuadores, interconectados a nivel mundial e identificados unívocamente a través de un esquema de direcciones.
- Cada objeto puede interactuar y cooperar con los demás para alcanzar un objetivo común [Atzori et al.].

Procesamiento de eventos complejos o Complex Event Processing (CEP)

- Tecnología emergente que permite procesar, analizar y correlacionar grandes cantidades de eventos [Luckham].
- Para detectar y responder en tiempo real y de forma automática a las situaciones que son críticas o relevantes para los procesos de negocio.
- Se utilizan unos patrones de eventos que inferirán nuevos eventos más complejos y con un mayor significado semántico.

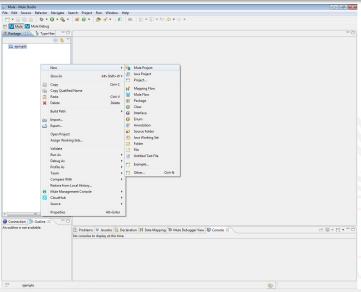
Arquitectura a implementar con Mule

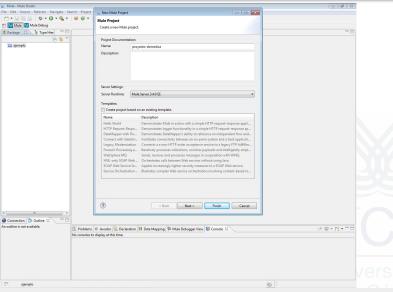
Fuente: arquitectura adaptada de [Boubeta Puig et al., 2011]

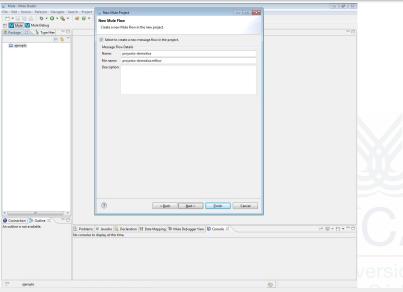
Fuente de mensajes (I)

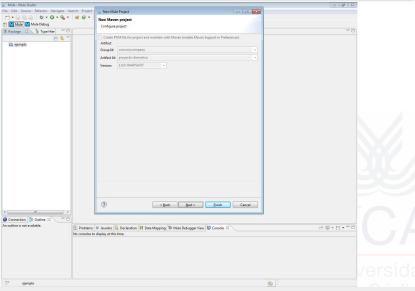
Flujos de Xively sobre domótica utilizados en este caso de estudio

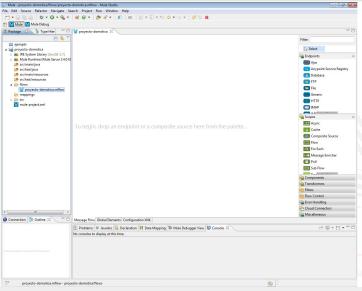
	No	Nombre del flujo	País	URL	Actualiz.	
	F1	Residential information	Holanda	https://xively.com/feeds/62988/		
Ì	F2	HAC Center	Polonia	https://xively.com/feeds/103216	1 min	

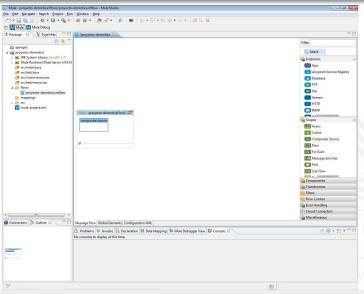


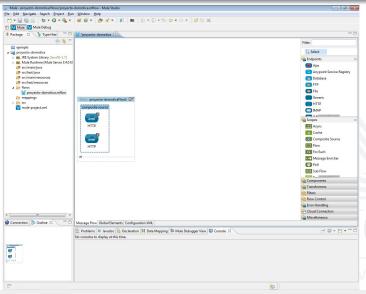

Fuente de mensajes (II)

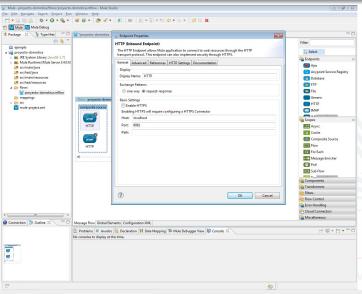

Formato de los datos de flujos normalizados

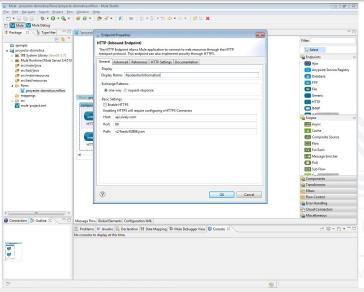

Dato	Tipo	Descripción	F1	F2
Hogar	String	Nombre del flujo.	Х	Х
Sensor	String	URL del flujo.	Х	Х
Localización	String	Nombre de la ciudad, país.	Х	Х
Latitud	float	Latitud de la localizacion.	Χ	Х
Longitud	float	Longitud de la localización.	Х	Х
TiempoRegistro	String	Fecha y hora de registro del dato.	X	Х
ConsumoEnergético	float	Consumo energético (W)	X	Х
TemperaturaInterior	float	Temperatura interior del hogar (°C)	Χ	X
TemperaturaExterior	float	Temperatura exterior (°C)		X

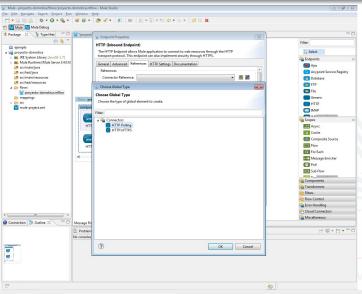

Crear un proyecto Mule

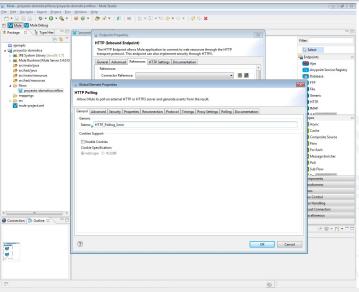


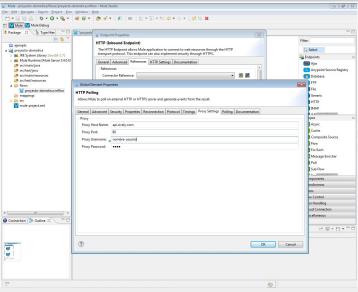


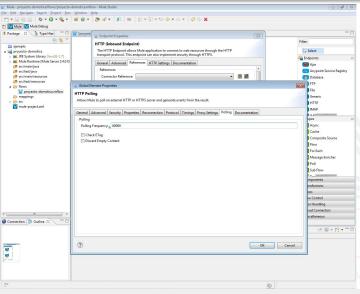


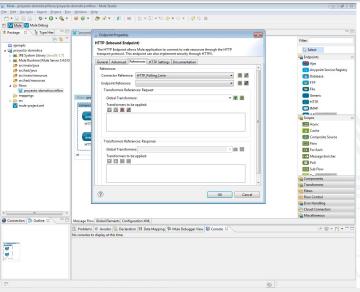


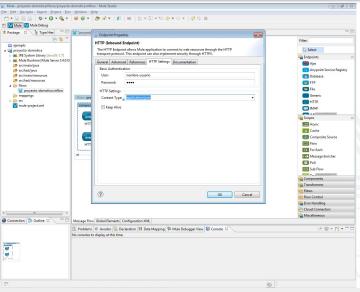


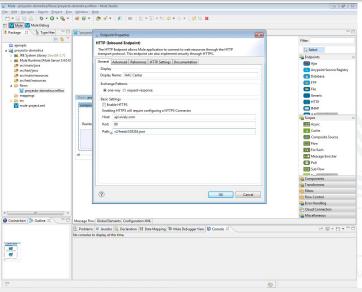


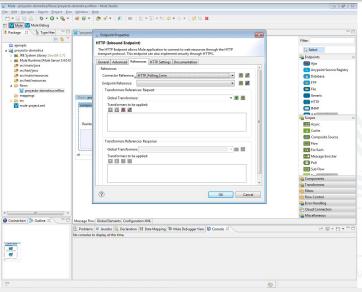


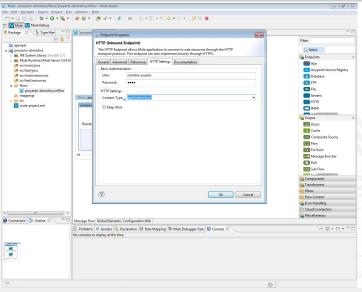


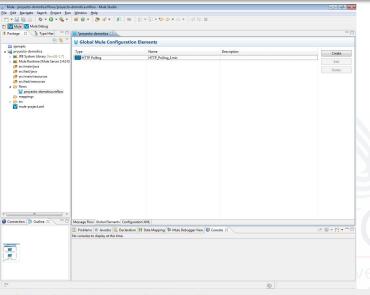


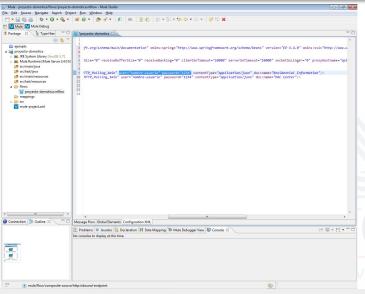


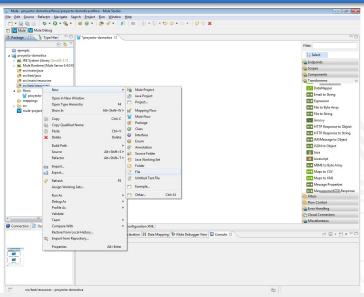


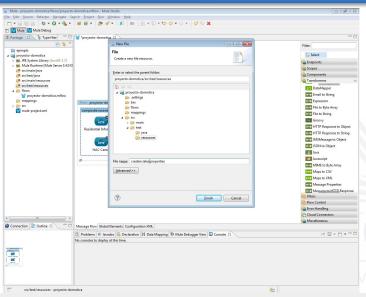


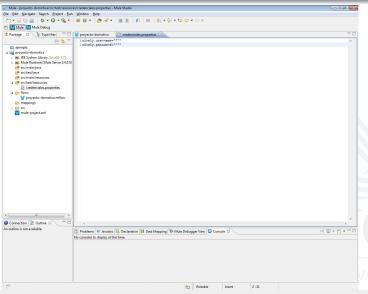


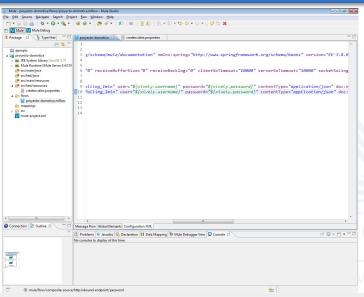


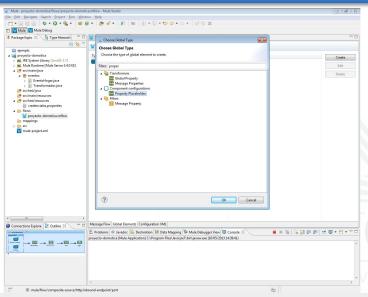


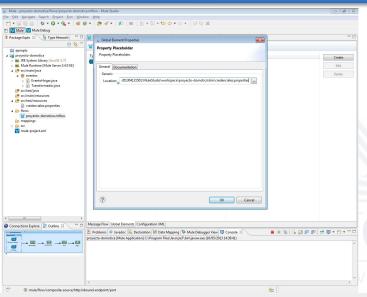


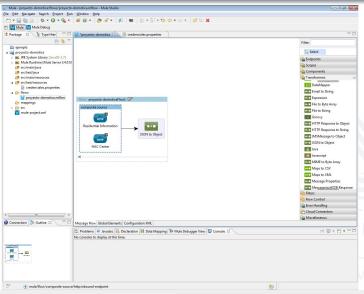



Crear un fichero .properties con las contraseñas

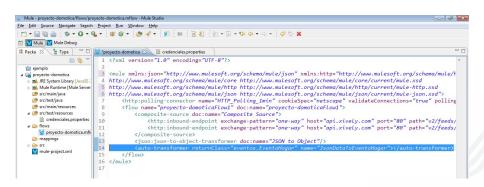

Crear un fichero .properties con las contraseñas (cont.)


Crear un fichero .properties con las contraseñas (cont.)

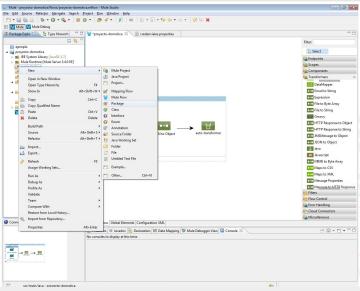

Crear un fichero .properties con las contraseñas (cont.)


Crear un fichero .properties con las contraseñas (cont.)

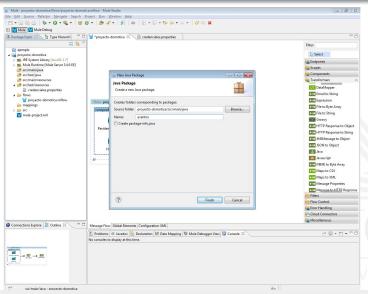
Crear un fichero .properties con las contraseñas (cont.)



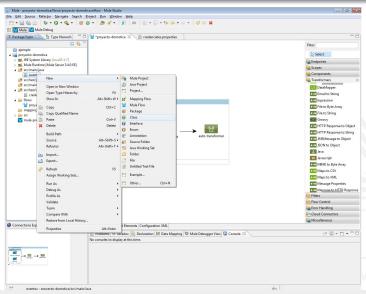
Añadir un transformador JSON-To-Object

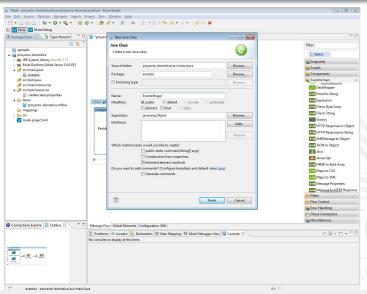

Añadir un transformador personalizado

Convertirá los objetos JsonData al tipo EventoHogar



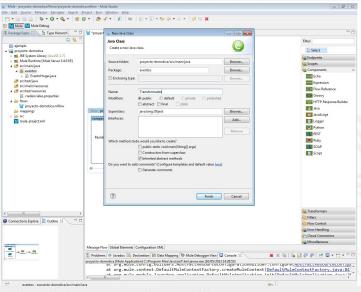
Más información: http://www.mulesoft.org/docs/site/current3/apidocs/org/mule/module/json/JsonData.html


Añadir un transformador personalizado (cont.)

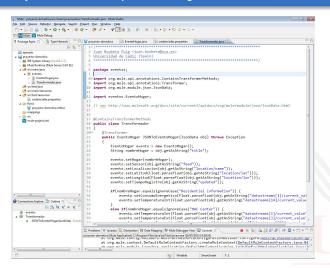

Añadir un transformador personalizado (cont.)

Añadir un transformador personalizado (cont.)

Añadir un transformador personalizado (cont.)

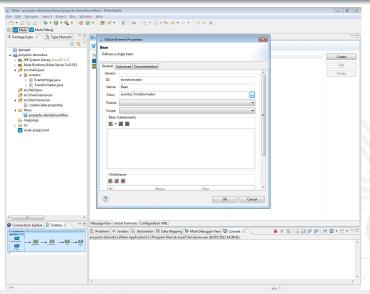

Añadir un transformador personalizado (cont.)

Convertirá los objetos JsonData al tipo EventoHogar

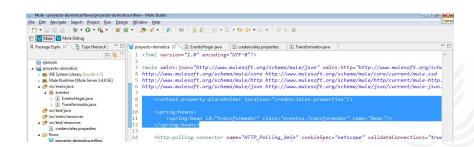

```
Mule - proyecto-domotica/src/main/java/eventos/TventoHogar.java - Mule Studi-
File Edit Source Refactor Navigate Search Project Run Window Help
□ - 回 0 曲 | 9 - 0 - 9 - 1 単 G - 19 イ - 中国 | 回 | 1 回 | 9 - 9 - 9 - 0 - 0 -
■ Package Diplo 🗈 🦜 Type Herorch 🤍 🗎 🍟 proyecto-domotica 👚 credenciales properties 🕡 EventoHogarjava 😂
                                      Juan Boubeta Puig (juan.boubeta@uca.es>
# 👹 proyecto-dometica
                                        Universidad de Cádiz (Spain)
  FX System Library (InvaSE-1.7)
  ► Mule Runtime [Mule Server 3.4.0 EE]
  a @ src/main/java
                                        package eventos;
       > D EventoHogarjava
                                      8 public class EventoHogar {
    A pro/test/seve
    (# syc/majo/resources
                                            private String hogan;
   # @ src/test/resources
                                            private String sensor:
      n credenciales properties
                                            private String localizacion;
   # @ flows
                                            private float latitud:
      Y proyecto-dometica.mflow
                                            private float longitud;
    @ mappings
                                            private String tiempoRegistro;
                                            private float consumoEnergetico;
    mule-projectami
                                            private float temperaturaInt; // temperatura interior
                                            private float temperaturaExt; // temperatura exterior
                                            public EventoHogar(String ho, String s, String 1, float la, float lo, String t,
                                                     float e, float ti, float te) {
                                                 hogar - ho;
                                                 sensor - s:
                                                localizacion = 1;
                                                latitud - la:
                                                longitud = lo;
                                                tiempoRegistro = t:
                                                consumoEnergetico = e;
                                                temperaturaInt = ti:
                                                 temperaturaExt = te;
                                            public EventoHogar() (
                                  The Problems Awadoc Declaration M Data Mapping St Mule Debugger View Console XX
                                                                                                                                    of E - 13 - 1
 ⊕ EventoHogan
```

Pulse aquí para ver fichero EventoHogar.java

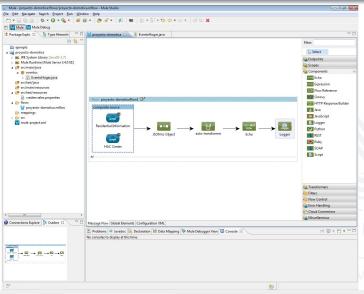
Añadir un transformador personalizado (cont.)



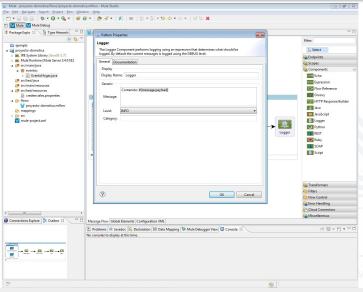
Añadir un transformador personalizado (cont.)



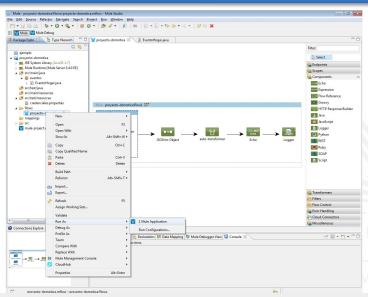
Añadir un transformador personalizado (cont.)


Añadir un transformador personalizado (cont.)

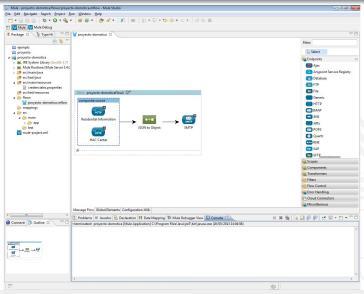
Convertirá los objetos JsonData al tipo EventoHogar



Añadir Echo y Logger para visualizar mensajes



Añadir *Echo* y *Logger* para visualizar mensajes (cont.)

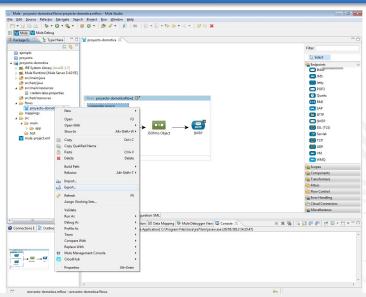


Ejecutar la aplicación Mule

Run As > Mule Application

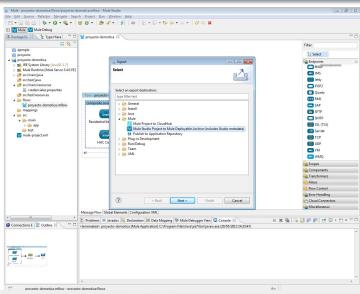
Usar SMTP para enviar alertas por correo electrónico

Usar SMTP para enviar alertas por correo electrónico

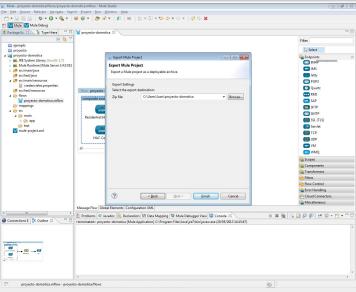

```
<smtps:outbound-endpoint host="smtp-alum.uca.es" port="465"
  user="${uca.username}" password="${uca.password}"
  to="****@alum.uca.es" from="****@alum.uca.es"
  subject="Envio de alerta" responseTimeout="3000"
  doc:name="SMTP"/>
```

A tener en cuenta

- La dirección origen (from) debe ser una cuenta válida de la UCA.
- Deben desactivarse los cortafuegos del sistema operativo, así como antivirus. En el caso de Avast: *Control de los escudos de avast!* > *Desactivar*.

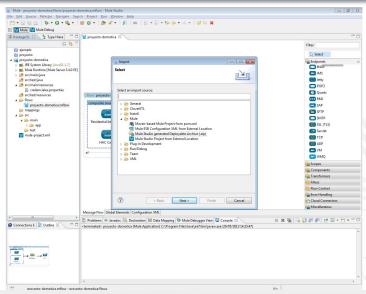

Exportar la aplicación Mule

File > Export...

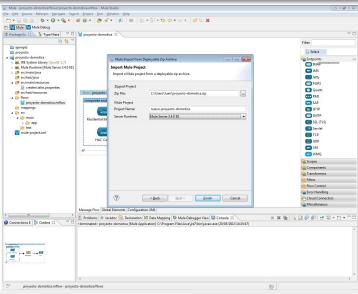


Exportar la aplicación Mule (cont.)

Mule > Mule Studio Project... (includes Studio metadata)



Exportar la aplicación Mule (cont.)



Importar la aplicación Mule

File > Import... > Mule Studio generated Deployable Archive (.zip)

Importar la aplicación Mule

Referencias bibliográficas I

Mule Studio

http://www.mulesoft.org/download-mule-esb-community-edition, mayo 2013.

LogMeIn, Inc.

Xively – Public Cloud for the Internet of Things https://xively.com/, mayo 2013.

D. Luckham

The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems
Addison-Wesley, 2001.

D. Luckham

Event Processing for Business: Organizing the Real-Time Enterprise Wiley, 2012.

Referencias bibliográficas II

Esper - Complex Event Processing http://esper.codehaus.org/, mayo 2013.

J. Boubeta Puig; G. Ortiz; I. Medina Bulo

Procesamiento de Eventos Complejos en Entornos SOA: Caso de Estudio para la Detección Temprana de Epidemias

Actas de las VII Jornadas de Ciencia e Ingeniería de Servicios

A Coruña, septiembre, 2011.

The Internet of Things: A Survey

Computer Networks (15), pp. 2787-2805, octubre, 2010.

