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Metaheuristics and MANETs
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• Energy efficiency
• Broadcast
• Routing
• Network topology

- Connectivity
- Clustering
- Node deployment

• Selfishness
• Security
• Quality of Service



/ 52

Metaheuristics and MANETs
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• We can characterise them in terms of
- Operation mode
‣ Offline
‣ Online

- Knowledge
‣ Global
‣ Local

- Approach
‣ Centralized
‣ Decentralized
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Metaheuristics and MANETs
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Centralised
local

Centralised
global

Decentralised
local

Decentralised
global

Offline

Online

Protocol optimisation
Topology Ctrl: Sleep mode
Topology Ctrl: Power allocation
Topology Ctrl: Node deployment
Topology Ctrl: Connectivity

Broadcasting
Clustering
Routing
Multipath Routing
Multicast Routing

Mobility
Selfishness
Security
Others
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Single-objective optimization
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Global Maximum

Local Maximum

Global Minimum

Local Minimum

Maximization

Minimization

Solutions Space
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How to solve optimization problems?
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• Complete methods

• Approximate methods

They guarantee to find for every finite size instance of 
a CO problem an optimal solution in bounded time 

No guarantee of finding an optimal solution

Only CO 
problems!

Combinatorial 
and Continuous
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Optimization algorithms classification
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Optimization Algorithms

Complete MethodsApproximate Methods

Dynamic 
Programming

Branch and 
Bound

Heuristics Metaheuristics

Constructive
Heuristics

Local 
Search

Population 
Based

Trajectory 
Based

Evolutionary 
Algorithms

Ant Colony
Optimization

Particle Swarm 
Optimization

Simulated 
Annealing

Tabu 
Search
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Diversification/Intensification
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• Metaheuristics must achieve a balance between diversification 
and intensification
- Diversification: exploration of the search space
- Intensification: exploitation of promising regions of the search 

space

x

f(x)

x

Diversification

Intensificationf(x)
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Concept of neighborhood
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• Given a solution s, the neighborhood of s, N(s), is the set of 
solutions of the search space that can be reached using some 
kind of transformation on s

x

f(x)

N’(s)

N’’(s)

s
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Genetic algorithms
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• Evolutionary Algorithms (EAs): Useful optimization techniques 
for complex problems
- Show a good tradeoff between exploration and exploitation

• Based in population
- Individuals ➔ Potential solutions to the problem
‣ Fitness value: ¿How good is the individual?

- Variation operators ➔ Allow the evolution of the population
‣ Recombination: Interchange of genetic material
‣ Mutation: Generation of new genetic material
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Genetic algorithms

14

• Population evolution
- Improvement of the quality of solutions
- Guided by the fitness function

• Application operators
- Stochastic
- Generic Selection Recombination

Insertion

MutationPopulation of 
Individuals

Evaluation

Local Search 
(Improvement step)

Panmictic
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Cellular genetic algorithms
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• Spatially structured population (2-D)
• Breeding loop applied inside small neighborhoods

Selection

Recombination

Mutation

Repeated  
for every 
individual

Insertion
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Cellular genetic algorithms
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• Spatially structured population (2-D)
• Breeding loop applied inside small neighborhoods
• Overlapped neighborhoods ➔ Smooth diffusion
• Isolation by distance among individuals in the population
• Appropriate exploration/exploitation tradeoff

- Exploitation: Inside neighborhoods
- Exploration: Neighborhood borders

Red individual  
neighborhood

Overlapping

Green individual  
neighborhood

L5 C21
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Cellular genetic algorithms
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cGA with L5 genGA

Converges to 967.0 after 24sOptimum (1077.0) after 33 s
Worse

Better

Optimum

MAXUT100 Problem
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Cellular genetic algorithms
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cGA with L5 genGA

Converges to 967.0 after 24sOptimum (1077.0) after 33 s
Worse

Better

Optimum

MAXUT100 Problem
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Cellular genetic algorithms
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cGA with L5 genGA

Optimum after 18.5sOptimum (10.1198) after 1.9 s
Worse

Better

Optimum

MAXUT20_01 Problem
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Cellular genetic algorithms
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Percentage of Successful Runs
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Cooperative Coevolutionary GAs
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• Part of De Jong’s five function test suite
• Continuous and unimodal 
 
 
 
 
with -2.12 ≤ xi ≤ 2.12

• Global minimum   
with 

Rosenbrock function

22
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GA on Rosenbrock (4 variables)
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• A chromosome encodes a complete solution
• Solution evaluated on the global problem

GA#Popula*on#

Individual#
Chromosome# Fitness#

x1# x2# x3#

1.1# $0.6# 0.8# $0.1#

x4#
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Loosely Coupled GA (LCGA)

24

• Each node runs a subpopulation for a subset of the N 
variables

• Each population evaluates its individuals on a local 
subproblem using a random individual received from its 
neighbor population

randoms( randoms(

Decomposi.on(

1.1# $0.6#

Chromosome(

1.1#

Fitness(

merge(

x1( x2(

… … 

$1.2# 0.2#

Chromosome(

$1.2#

Fitness(

merge(

x1( x2(
1.5# $0.8#

Chromosome(Fitness(

merge(

x1( x2(

1.5# $0.8#
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Cooperative Coevolutionary GA (CCGA)
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• Each node runs a subpopulation for a subset of the N 
variables

• Each population evaluates each of its individuals on the 
global fitness function using the best individual received 
from each other subpopulation

Chromosome(

1.1#

1.1# $0.6# 0.8# 0.1#

x1( x2( x3( x4(

Merge(with(best((
indiv.(received(

Fitness(

best(

best(

best(



Multi-objective 

Optimization
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Multi-objective optimization
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• Many real-world optimization problems require to optimize 
more than one objective at the same time
- These objectives are usually in conflict among them
- Improving one means worsening the others

• Multi-objective (or multi-criteria) optimization
- Discipline focused on solving multiobjective optimization 

problems ( MOPs )
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MO optimization: example
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• Example: travelling by car from Málaga to Madrid (535 km)

- Objective 1: 
‣ Minimizing time

- Objective 2:  
‣ Minimizing fuel

- Constraints: 
‣ Max. speed: 120 km/h
‣ Min. speed: 60 km/h

- Decision variable: 
‣ mean car speed
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Time%

Fuel%9%8%7%6% 10%

5%

7%

6%

8%

(5h,%40l)%

(5.5h,%35l)%

(6h,%30l)%

(8h,%20l)%

MO optimization: example

29

• Travelling by car from Málaga 
to Madrid (535 km)
- Extreme solutions
‣ Time: 5 hours, fuel: 9.0 litres
‣ Time: 8 hours, fuel: 6.0 litres

- Other solutions
‣ Time: 5.5 hours, fuel: 7.5 litres
‣ Time: 6 hours, fuel: 6.5 litres

Non-dominated

(7h,%33l)%

Dominated

X

25    30    35    40
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Multi-objective optimization
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• In single-objective 
optimization (SO)
- The optimum is
‣ One solution
‣ Several ones with same quality

X"
(Solu(on"space)"

F(X)"
(Objec(ve"space)"

• In multi-objective 
optimization (MO)
- The optimum (Pareto 

optimal set) is a set of (non-
dominated) solutions

X"
(Solu(on"space)"

F(X),"G(X),"…"
Objec(ve"space"

Pare
to 

op
tim

al 
se

t 

Pareto front 
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MO Optimization and Decision Making

31

• Finding the Pareto front of a 
problem is not the last step in 
multi-objective optimization

• In practice, an expert in 
the domain (the decision 
maker) has to choose the 
best trade-off solution
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MO Optimization and Decision Making
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• In the example of traveling 
from Málaga to Madrid

• If time is important
- Choose (5h, 40l)

• If consumption is important:
- Choose (8h, 20l)

• Compromise solution:
- (6h, 30l)
- (5.5h, 35l)

Time%

Fuel%9%8%7%6% 10%

5%

7%

6%

8%

(5h,%40l)%

(5.5h,%35l)%

(6h,%30l)%

(8h,%20l)%

25    30    35    40
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The goal of MO optimization

33

• The ideal goal is to obtain the Pareto front
• Unfortunately, this is unpractical in real-world problems

- NP-hard complexity, non-linearity, epistasis, …
- Frequently, exact techniques are not useful

• Alternative: Use non-exact algorithms
- E.g. Metaheuristics
- These techniques provide an approximation to the Pareto front
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The goal of MO optimization

34

• The goal is to find the Pareto front

• Exact techniques are not useful in most cases
- NP-hard complexity, non-linearity,  epistasis , …

• Rely on approximation techniques
- Two key features to measure the quality of solutions
‣ Convergence
‣ Diversity
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NSGAII

35

• Non-dominated Sorting Genetic Algorithm
• The most popular metaheuristic for multi-objective 

optimization
• Features

- Ranking using non-dominated sorting
- Crowding distance as density estimator  

Area%represen)ng%the%crowding%distance%of%point%A%

Area%represen)ng%the%crowding%distance%of%point%B%

f2%

f1%

B%

A%

Point%B%is%in%a%less%crowded%region%than%point%A%
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NSGAII

36

Non$
dominated$
sor-ng$

Population


N
 in

di
vi

du
al

s 

Auxiliar Population


N
 in

di
vi

du
al

s 

Rank$1$

Rank$2$

Rank$3$

Rank$4$

Rank$5$

Crowding$
distance$
assignment$

GEN
ER

ATION M



GEN
ER

ATION M
+1




/ 52

CellDE

37

Selection
Repeated  
for every 
individual

Insertion

•
Store?

External Archive with 
Non-Dominated Solutons

•Feedback after  
every generation

Variation 
Operators
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Differential evolution
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Mutant VectorSelection

Recombination

Insertion

2.1 Overview      39 

xr1,g

xr2,g

F⋅(xr1,g-xr2,g)

xr0,g

vi,g = xr0,g+F⋅(xr1,g-xr2,g)

x0

x1

Fig. 2.1. Differential mutation: the weighted differential, F⋅(xr1,g− xr2,g), is added 
to the base vector, xr0,g, to produce a mutant, vi,g.

2.1.4 Crossover 

To complement the differential mutation search strategy, DE also employs 
uniform crossover. Sometimes referred to as discrete recombination,
(dual) crossover builds trial vectors out of parameter values that have been 
copied from two different vectors. In particular, DE crosses each vector 
with a mutant vector: 

( )=≤
==

otherwise.

or(0,1)randif

,,

rand,,
,,,

gij

jgij

gijgi
x

jjCrv
uu

(2.6)

The crossover probability, Cr ∈ [0,1], is a user-defined value that con-
trols the fraction of parameter values that are copied from the mutant. To 
determine which source contributes a given parameter, uniform crossover 

• Mutant vector generation
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Differential evolution

39

• Recombination

Mutant VectorSelection

Recombination

Insertion

40      2  The Differential Evolution Algorithm 

compares Cr to the output of a uniform random number generator, 
randj(0,1). If the random number is less than or equal to Cr, the trial pa-
rameter is inherited from the mutant, vi,g; otherwise, the parameter is cop-
ied from the vector, xi,g. In addition, the trial parameter with randomly 
chosen index, jrand, is taken from the mutant to ensure that the trial vector 
does not duplicate xi,g. Because of this additional demand, Cr only ap-
proximates the true probability, pCr, that a trial parameter will be inherited 
from the mutant. Figure 2.2 plots the possible trial vectors that can result 
from uniformly crossing a mutant vector, vi,g, with the vector xi,g.

xr1,g

xr2,g

F⋅(xr1,g-xr2,g)
xr0,g

x0

x1

xi,g

u''
i,g

u'i,g

vi,g=ui,g

Fig. 2.2. The possible additional trial vectors u′i,g , u″i,g when xi,g and vi,g are uni-
formly crossed 

2.1.5 Selection 

If the trial vector, ui,g, has an equal or lower objective function value than 
that of its target vector, xi,g, it replaces the target vector in the next genera-
tion; otherwise, the target retains its place in the population for at least one 
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Differential evolution

40

Mutant VectorSelection

Recombination

Insertion

1 5 -2,5 30,7 0,4

5,7 8,9 0,3 -4,3 30,5

4,2 7,2 3,3 8,2 6,7

xr0,g

xr1,g

xr2,g

1,75 5,85 -0,7 24,45 12,3vi,g
vi,g = xr0,g + F · (xr1,g - xr2,g)
F = 0.5

1 5 -2,5 30,7 0,4xr0,g

ui,g = xr0,g otherwise{ vi,g With prob. CR

1,75 5 -0,7 30,7 0,4ui,g
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Cooperative Coevolutionary GA (CCGA)

41

• Each node runs a subpopulation for a subset of the N 
variables

• Each population evaluates each of its individuals on the 
global fitness function using the best individual received 
from each other subpopulation

Chromosome(

1.1#

1.1# $0.6# 0.8# 0.1#

x1( x2( x3( x4(

Merge(with(best((
indiv.(received(

Fitness(

best(

best(

best(
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Multi-objective CCGA

42
€ 

F(x)

Chromosome(

1"

1"

6" 8" 5"

x1( x2( x3( x4(

Merge(with(best((
indiv.(received(

Fitness(

best(best(

best( best(

3" 2" 8"

9" 4" 1"

2" 4" 8"

7" 5" 4"

Generate(final(archive(of((
non?dominated(soluAons(
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Three new multi-objective CCGAs
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• Three CCMOEAs designed
- Based on NSGA-II: CCNSGAII
- Based on SPEA2:    CCSPEA2
- Based on MOCell:  CCMOCell

NSGA-II MOCell

• Reference algorithm
• Panmictic population
• Selection of solutions

- Ranking
- Crowding

• Cellular population
- Only next individuals 

can interact
• External archive

- Feedback to 
population 

SPEA2

• Panmictic population
• External archive

- Strength raw fitness
- k-nearest neighbors 
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Quality metrics

44
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Quality metrics

45

• Generational distance
- Average distance of every solution of a front A to the Pareto 

front
- Convergence to the true Pareto front
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Quality metrics
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• Inverted generational distance
- Average distance of every solution of the points of the Pareto 

front to of a front A
- Convergence to the true Pareto front
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Quality metrics
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• Additive epsilon indicator
- Convergence to the Pareto front
- Given an approximation set A, this indicator is a measure of the 

smallest distance we would need to translate every solution in 
A so that it dominates the Pareto front
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Quality metrics
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• Spread 
- Diversity of the solutions along the Pareto front 

f2

A 1

A 2

A3

A 4

A 5

A 6
A 7

A 8 A 9 A 1 0

f1

d f

d 1

d 2

d 3

d 4

d 5
d 6 d 7 d l
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Quality metrics
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• Hypervolume 
- Takes into account both convergence and diversity
- Measures the region dominated by the obtained font
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Quality metrics

50

• All discussed metrics require the optimal Pareto front
- Either for computations
- Or to normalize the fronts

• What if we do not know it?
- Build a reference Pareto front of (hopefully) quasi-optimal 

solutions
‣ Run the problem with different algorithms
‣ Run every algorithm a large number of times
‣ Take the best non-dominated solutions found in all runs by all algorithms
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Methodology for comparing algorithms
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• Metaheuristics are stochastic algorithms
- Repeating the same experiment may lead to different results
- It is necessary to apply a rigorous statistical methodology to 

assess the performance of a metaheuristic
• To draw firm conclusions, we need to look for statistical 

significance on the results
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Methodology for comparing algorithms
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• Statistical significance 
- Large number of independent runs
- Compute quality metrics
- Statistical test on the results of the quality metrics
‣ Non-parametric test: Wilcoxon unpaired signed-ranks test

- Confidence level of 95% 
‣ Significance level of 5% or p-value under 0.05 in the statistical tests
‣ This means that the differences are unlikely to have occurred by chance 

with a probability of 95%
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AEDB: Experimental Framework

54

Mobility

Model

Monitoring

Tools

ExperimentsSimulator
Communication


Services

Protocol to 
optimize 

Network simulator
Configuration of 
simulations

Mobility simulation 

Performance  
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Optimisation

algorithms

Optimization algorithm
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Off-line optimization process
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Mobility

Model

Monitoring

Tools

ExperimentsSimulator
Communication


Services
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Network simulator
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Mobility simulation 
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Optimisation
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Optimization algorithm
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On-line optimization process
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Mobility

Model

Monitoring

Tools

ExperimentsSimulator
Communication


Services

Protocol to 
optimize 

Network simulator
Configuration of 
simulations

Mobility simulation 

Performance  
measurements

Optim.

Algor.


