Bernabé Dorronsoro Patricia Ruiz

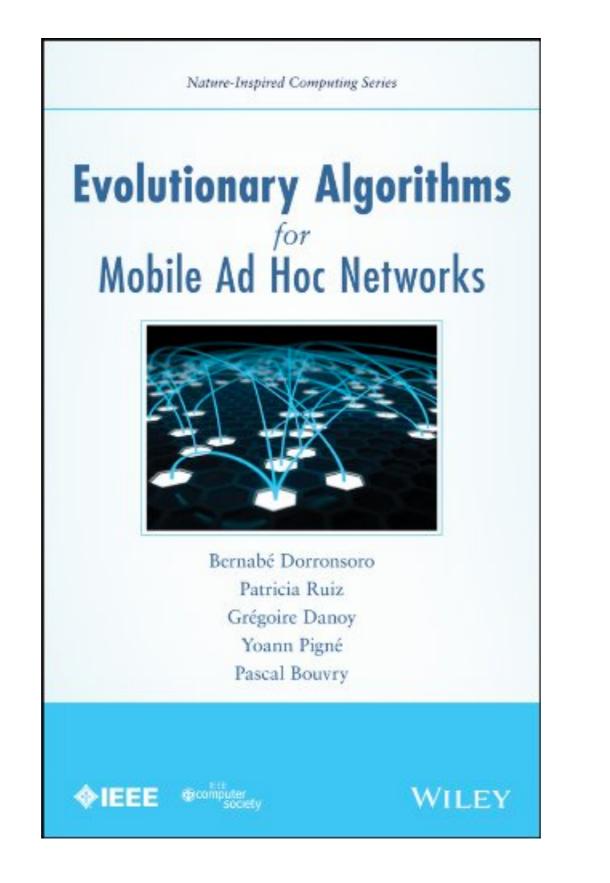
bernabe.dorronsoro@uca.es www.bernabe.dorronsoro.es patricia.ruiz@uca.es patriciaruiz.es

An Optimization Framework for Mobile Ad Hoc Networks

☐ FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

On the Need of Optimization for Mobile Ad Hoc Networks

☐ FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION



- Energy efficiency
- Broadcast
- Routing
- Network topology
 - Connectivity
 - Clustering
 - Node deployment
- Selfishness
- Security
- Quality of Service

Universidad de Cádiz

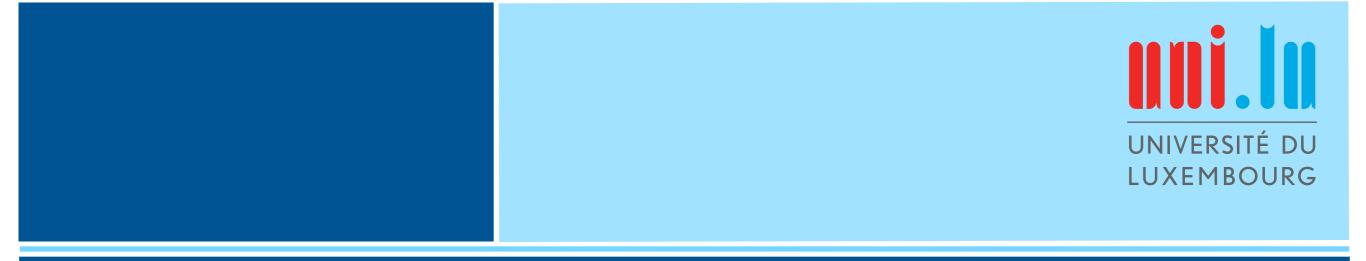
Metaheuristics and MANETs

- We can characterise them in terms of
 - Operation mode
 - Offline
 - Online
 - Knowledge
 - Global
 - Local
 - Approach
 - Centralized
 - Decentralized

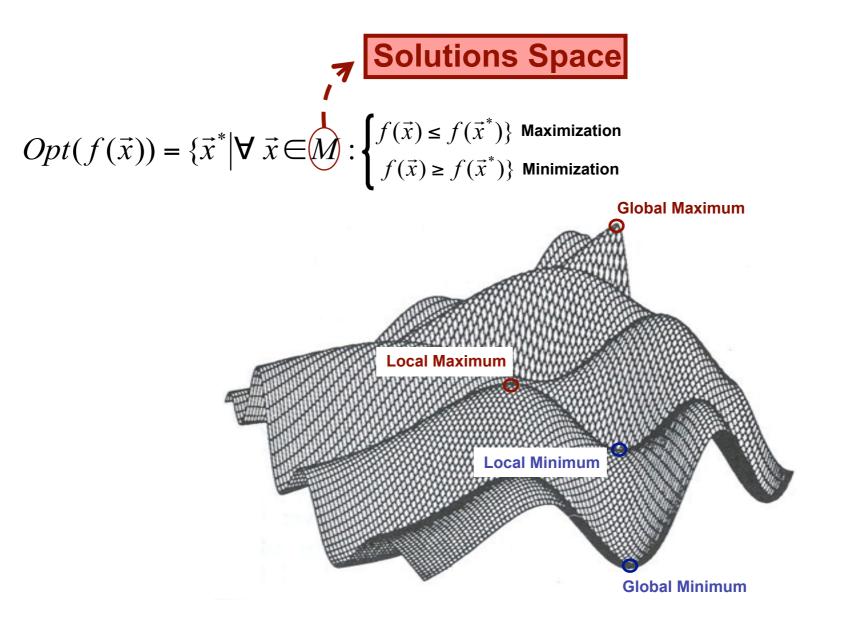
	Centralised local	Centralised global	Decentralised local	Decentralised global
Offline				
Online				

- Protocol optimisation
- Topology Ctrl: Sleep mode
- Topology Ctrl: Power allocation
- Topology Ctrl: Node deployment Topology Ctrl: Connectivity

- Broadcasting
- Clustering
- Routing
- Multipath Routing
- Multicast Routing
- Mobility Selfishness O Security Others



Single-objective Optimization



• Complete methods

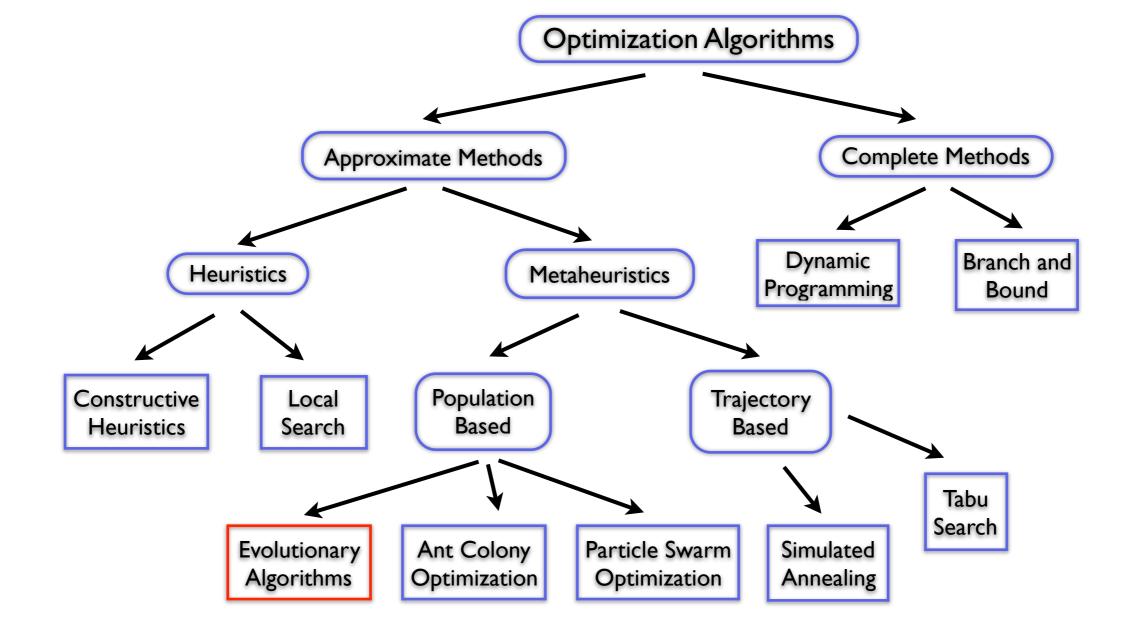
They guarantee to find for every finite size instance of a CO problem an optimal solution in bounded time Only CO problems!

• Approximate methods

No guarantee of finding an optimal solution

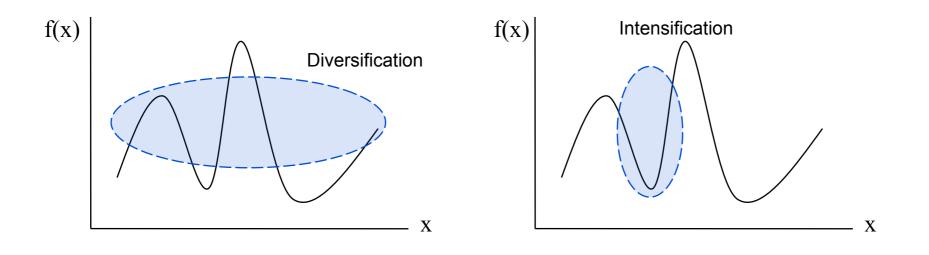
Combinatorial and Continuous

Optimization algorithms classification



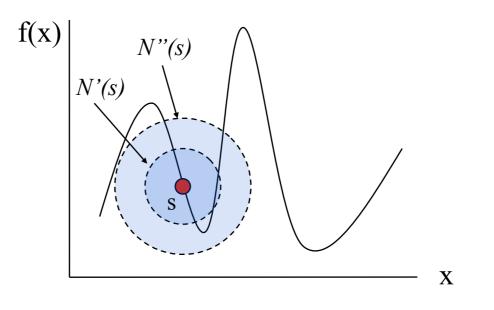
Diversification/Intensification

- Metaheuristics must achieve a balance between diversification and intensification
 - Diversification: exploration of the search space
 - Intensification: exploitation of promising regions of the search space

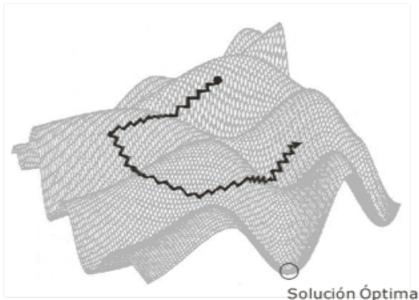


Universidad

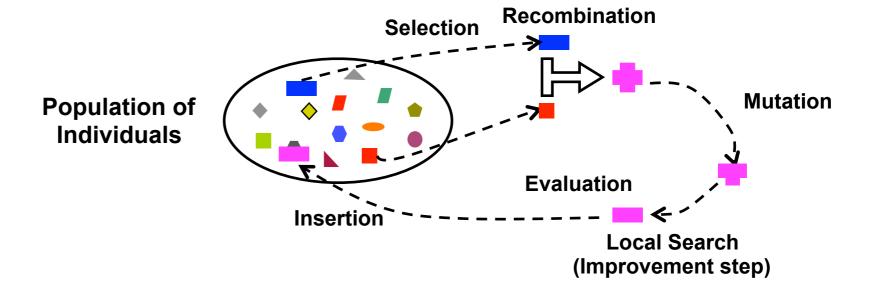
 Given a solution s, the neighborhood of s, N(s), is the set of solutions of the search space that can be reached using some kind of transformation on s



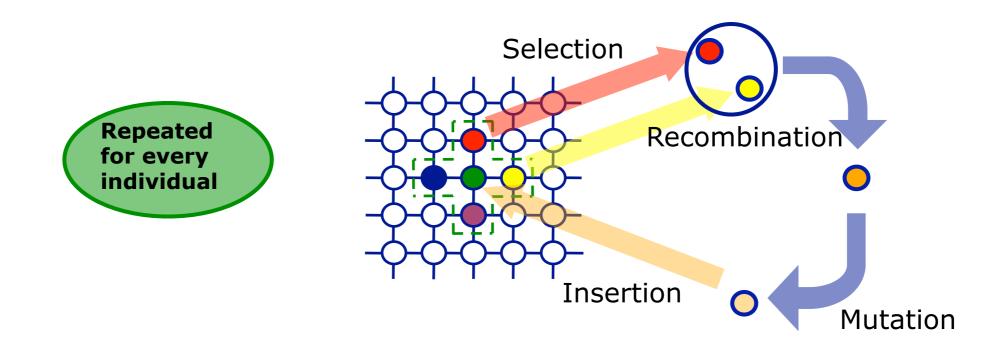
- Evolutionary Algorithms (EAs): Useful optimization techniques for complex problems
 - Show a good tradeoff between exploration and exploitation
- Based in population
 - Individuals \rightarrow Potential solutions to the problem
 - Fitness value: ¿How good is the individual?
 - Variation operators \rightarrow Allow the evolution of the population
 - Recombination: Interchange of genetic material
 - Mutation: Generation of new genetic material



- Population evolution
 - Improvement of the quality of solutions
 - Guided by the fitness function
- Application operators
 - Stochastic
 - Generic

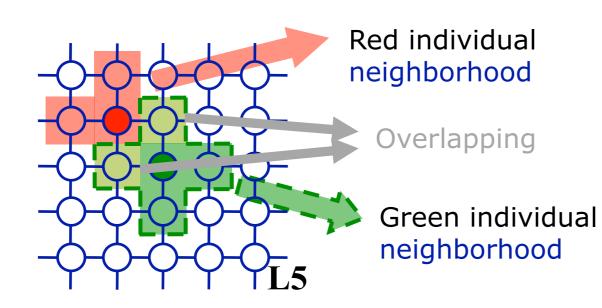


- Spatially structured population (2-D)
- Breeding loop applied inside small neighborhoods



Universidad de Cádiz

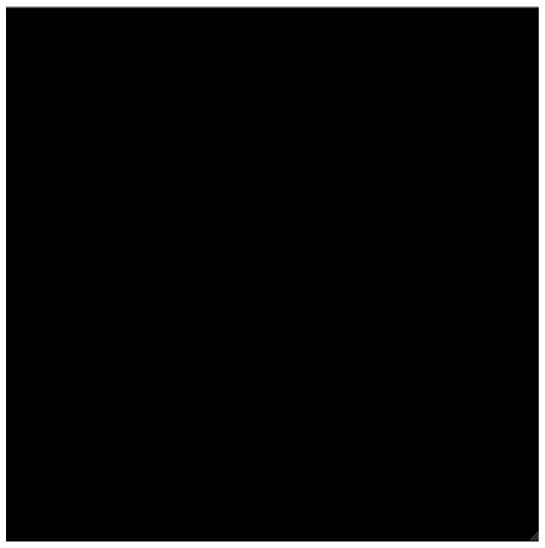
- Spatially structured population (2-D)
- Breeding loop applied inside small neighborhoods
- Overlapped neighborhoods → Smooth diffusion
- Isolation by distance among individuals in the population
- Appropriate exploration/exploitation tradeoff
 - Exploitation: Inside neighborhoods
 - Exploration: Neighborhood borders



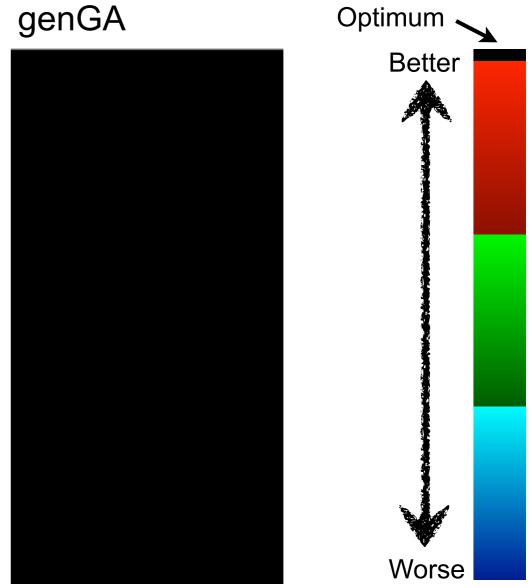


MAXUTI00 Problem

cGA with L5



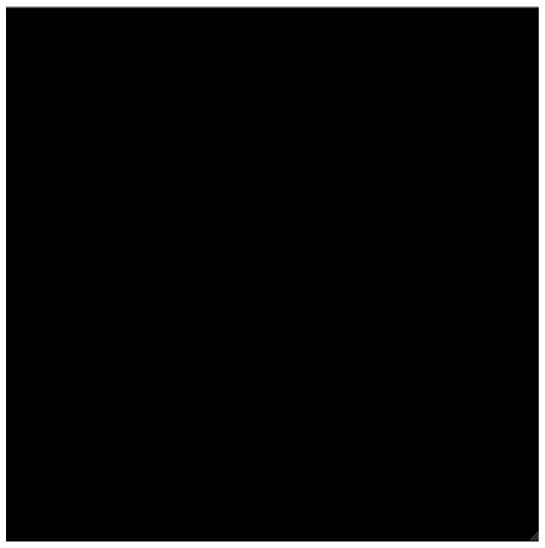
Optimum (1077.0) after 33 s



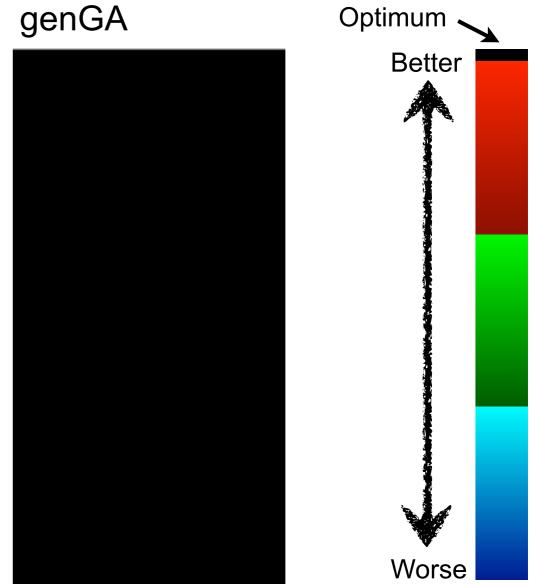
Converges to 967.0 after 24s

MAXUTI00 Problem

cGA with L5



Optimum (1077.0) after 33 s

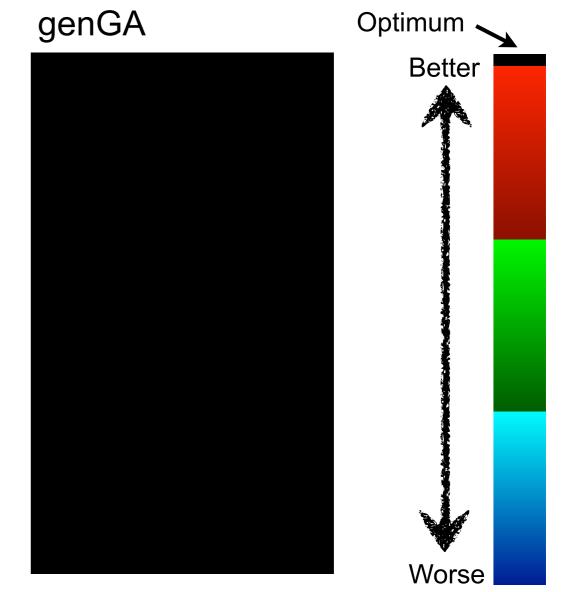


Converges to 967.0 after 24s

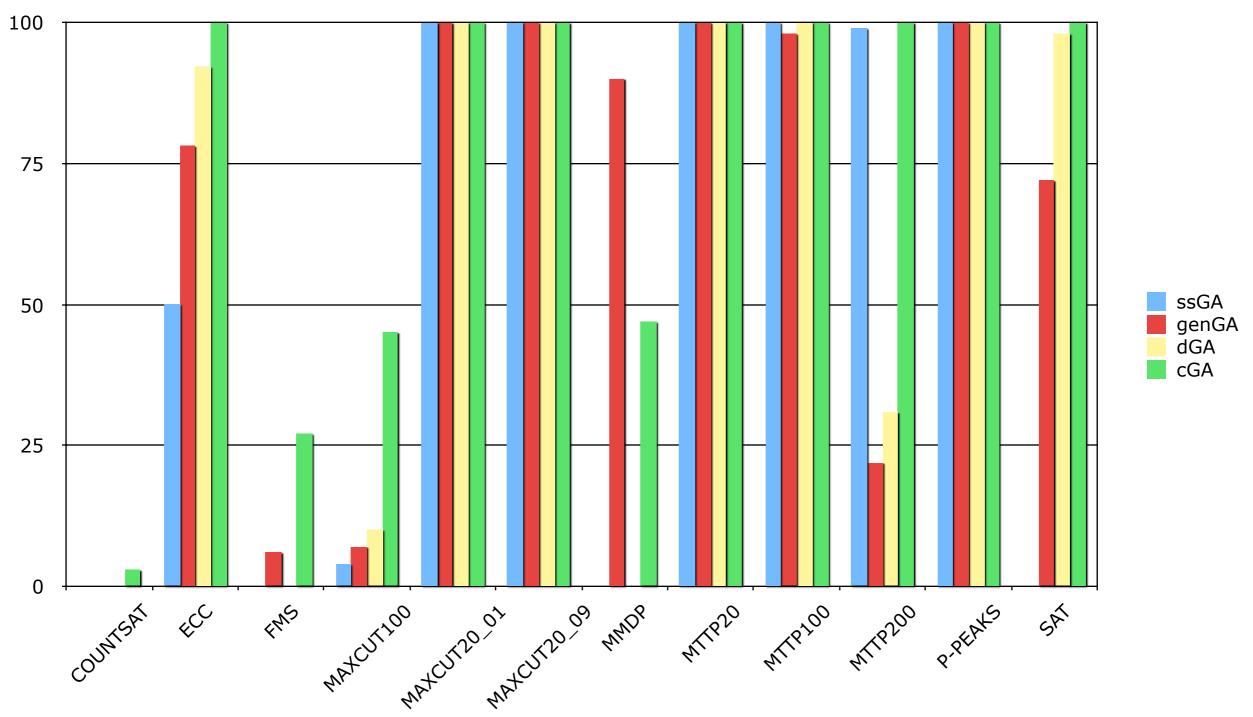
MAXUT20_01 Problem

cGA with L5

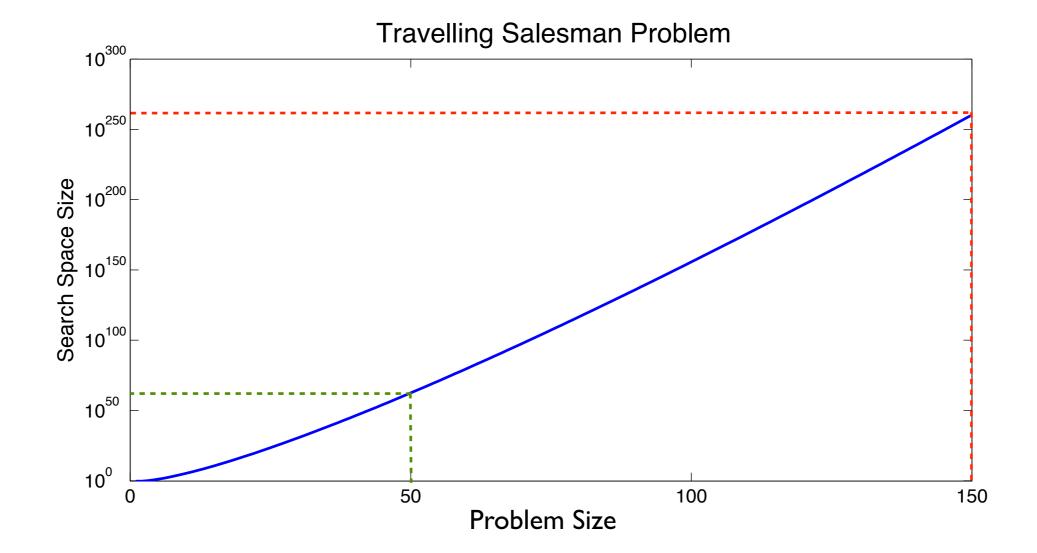
Optimum (10.1198) after 1.9 s



Optimum after 18.5s



Percentage of Successful Runs

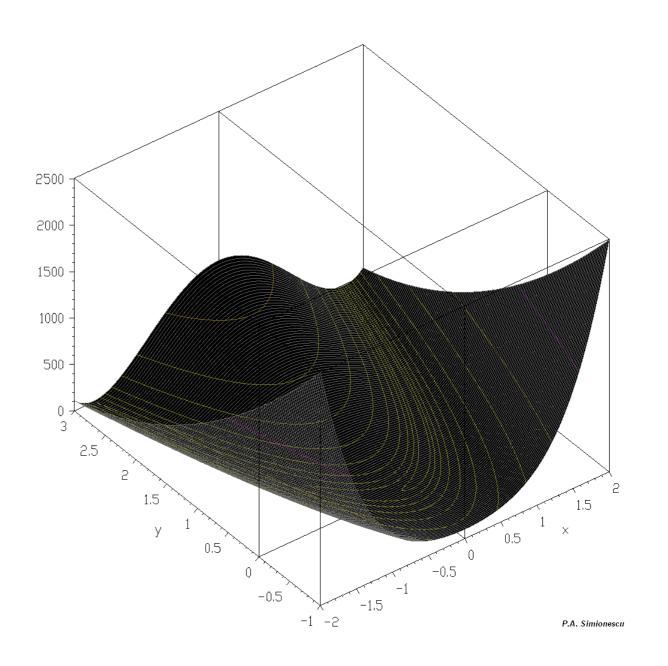


- Part of De Jong's five function test suite
- Continuous and unimodal

$$f(x) = \sum_{i=1}^{n} \left(100 \left(x_i^2 - x_{i+1} \right)^2 + \left(1 - x_i \right)^2 \right)$$

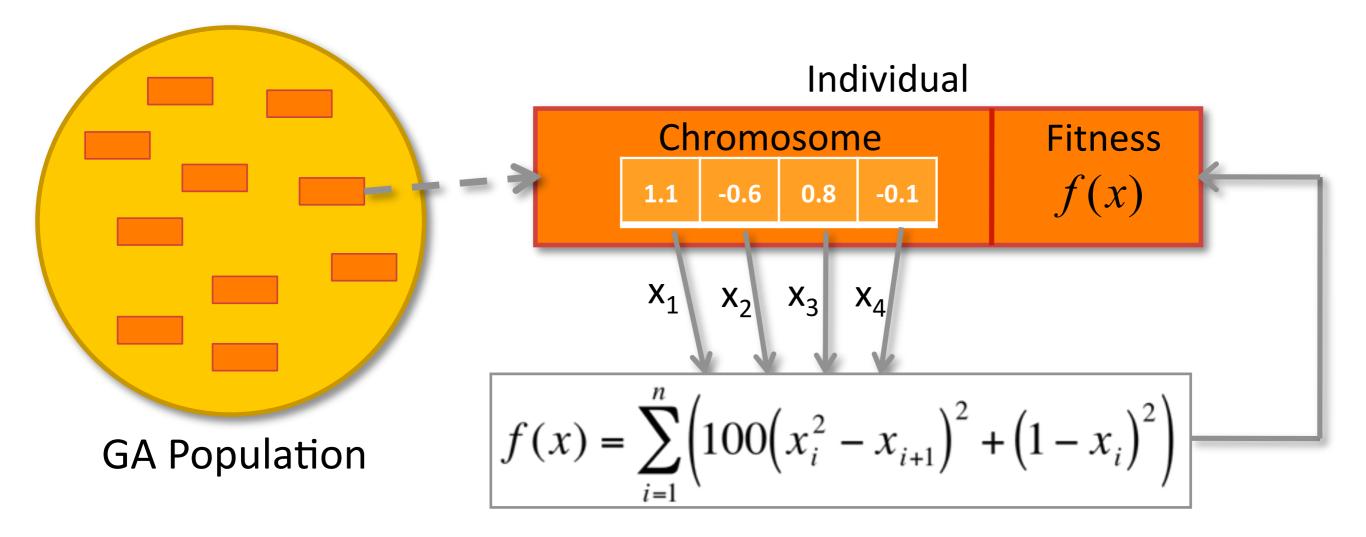
with -2.12 $\leq xi \leq 2.12$

• Global minimum $f(x^*) = 0$ with $x^* = (1,1,...1)$

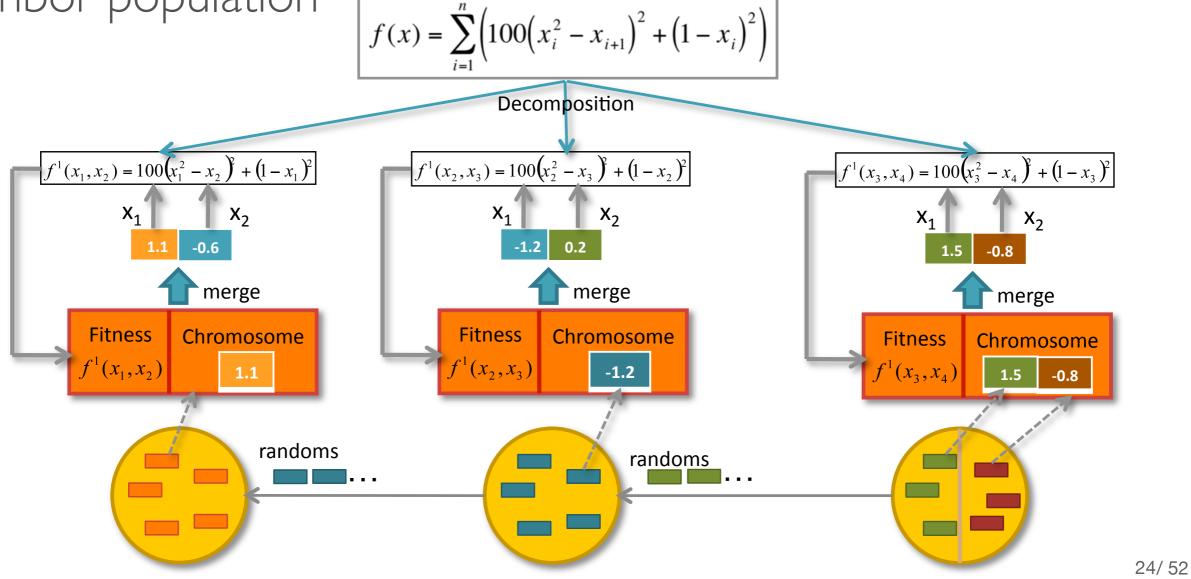


GA on Rosenbrock (4 variables)

- A chromosome encodes a complete solution
- Solution evaluated on the global problem

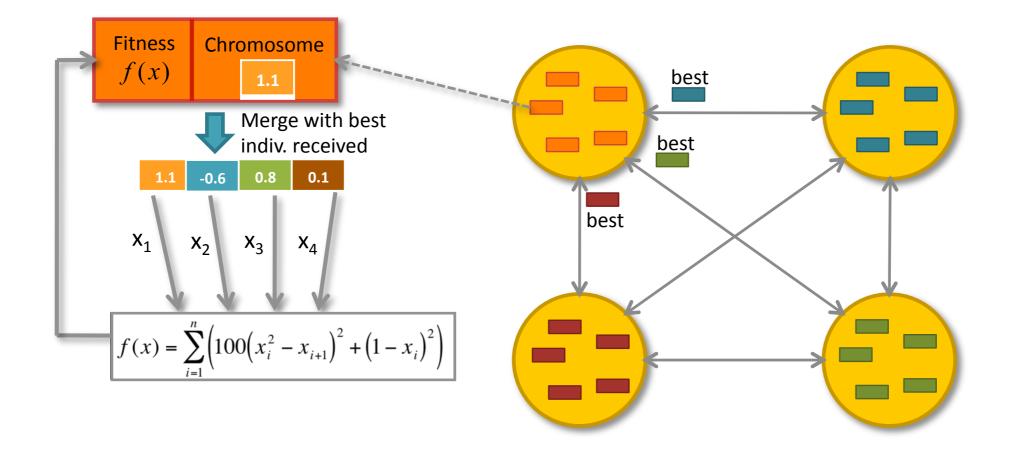


- Universidad de Cádiz
- Each node runs a subpopulation for a subset of the N variables
- Each population **evaluates** its individuals on a **local subproblem** using a random individual received from its neighbor population $\int_{1}^{n} (\log(2^{2} - t)^{2} \cdot (t - t)^{2})$



Cooperative Coevolutionary GA (CCGA)

- Universidad de Cádiz
- Each node runs a subpopulation for a subset of the N variables
- Each population evaluates each of its individuals on the global fitness function using the best individual received from each other subpopulation

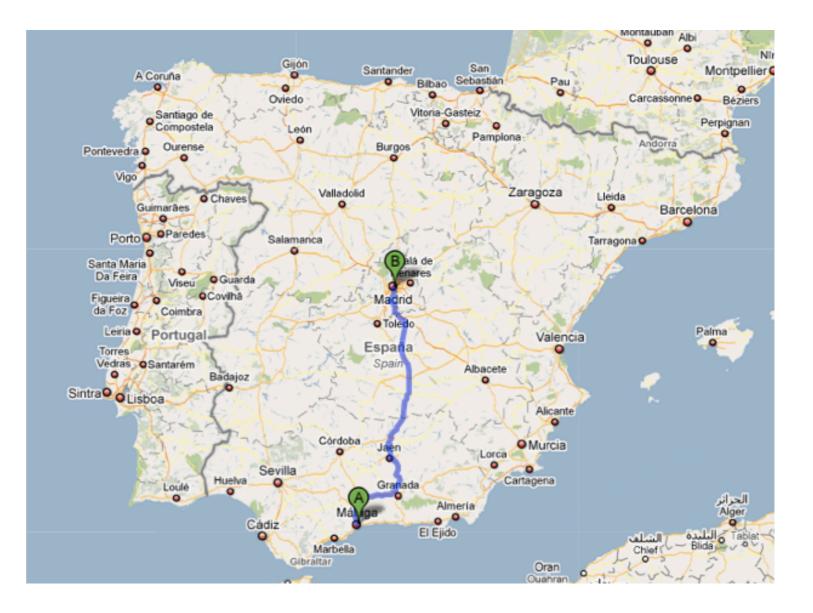


Multi-objective Optimization

- Many real-world optimization problems require to optimize more than one objective at the same time
 - These objectives are usually **in conflict** among them
 - Improving one means worsening the others
- Multi-objective (or multi-criteria) optimization
 - Discipline focused on solving multiobjective optimization problems (MOPs)

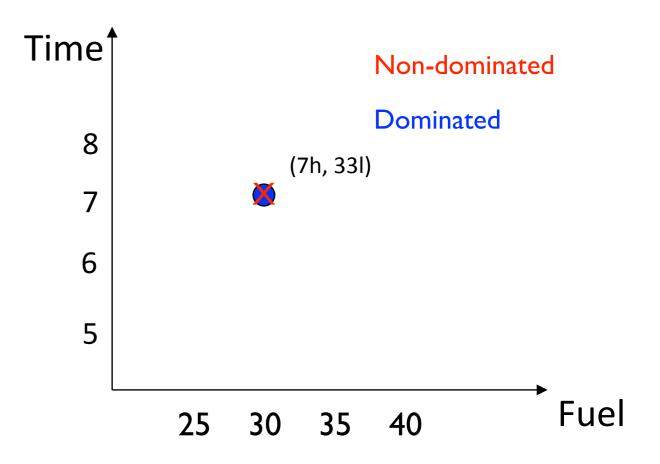
MO optimization: example

- Example: travelling by car from Málaga to Madrid (535 km)
 - Objective I:
 - Minimizing time
 - Objective 2:
 - Minimizing fuel
 - Constraints:
 - Max. speed: 120 km/h
 - Min. speed: 60 km/h
 - Decision variable:
 - mean car speed



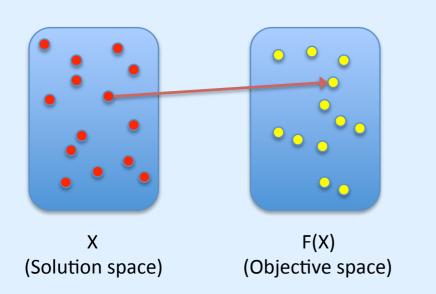
MO optimization: example

- Travelling by car from Málaga to Madrid (535 km)
 - Extreme solutions
 - Time: 5 hours, fuel: 9.0 litres
 - Time: 8 hours, fuel: 6.0 litres
 - Other solutions
 - Time: 5.5 hours, fuel: 7.5 litres
 - Time: 6 hours, fuel: 6.5 litres

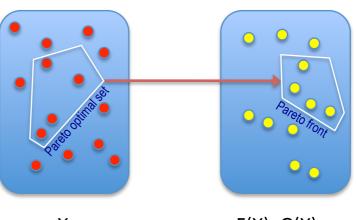


Multi-objective optimization

- In single-objective optimization (SO)
 - The optimum is
 - One solution
 - Several ones with same quality



- In multi-objective optimization (MO)
 - The optimum (Pareto optimal set) is a set of (nondominated) solutions



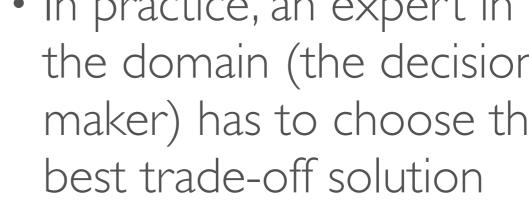
X (Solution space)

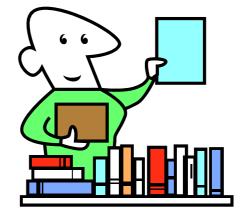
F(X), G(X), ... Objective space

MO Optimization and Decision Making

- Finding the Pareto front of a problem is not the last step in multi-objective optimization
- In practice, an expert in the domain (the decision maker) has to choose the best trade-off solution

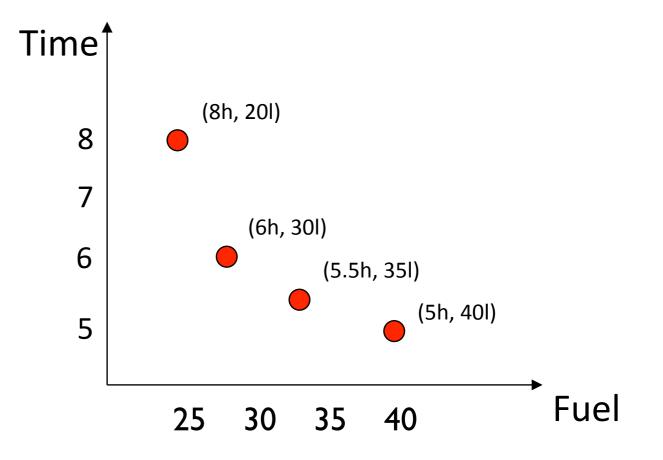
31/52





MO Optimization and Decision Making

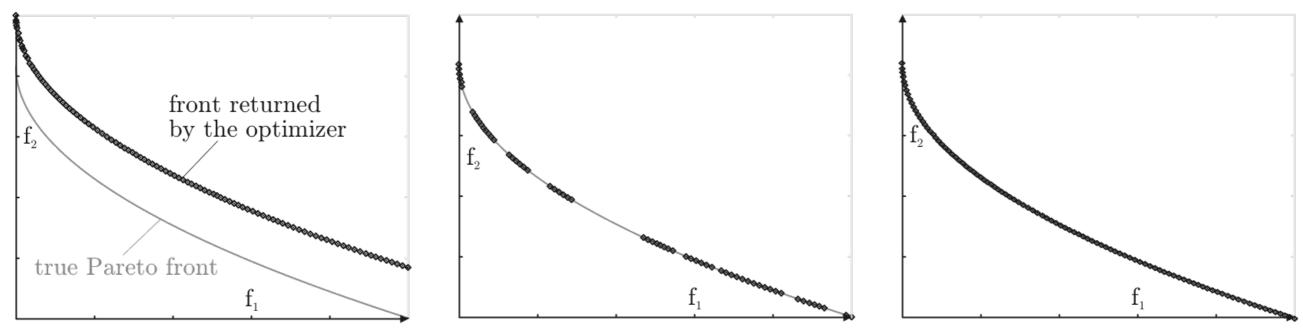
- In the example of traveling from Málaga to Madrid
- If time is important
 - Choose (5h, 40l)
- If consumption is important:
 Choose (8h, 20l)
- Compromise solution:
 - (6h, 30l)
 - (5.5h, 35l)



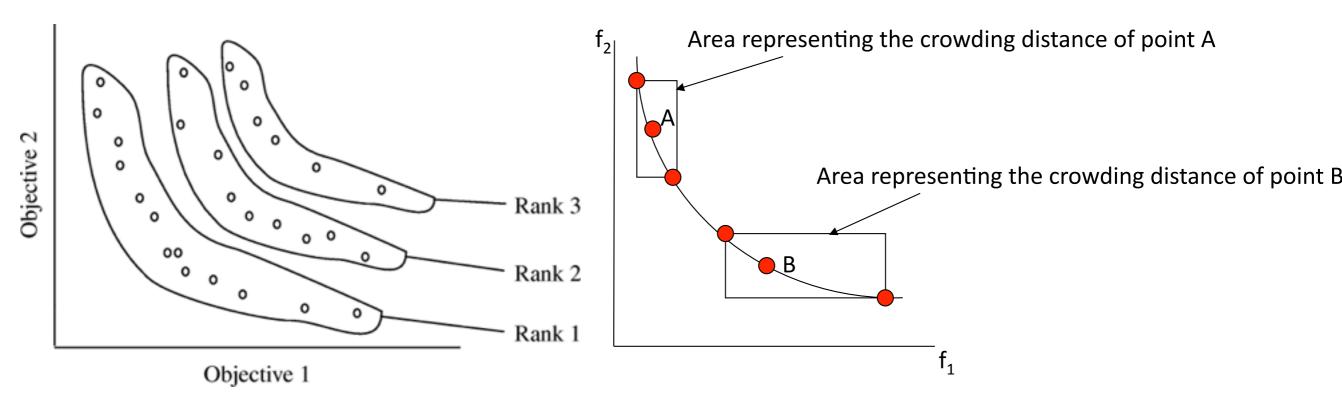
Universid de Cádiz

- The ideal goal is to obtain the Pareto front
- Unfortunately, this is unpractical in real-world problems
 - NP-hard complexity, non-linearity, epistasis, ...
 - Frequently, exact techniques are not useful
- Alternative: Use non-exact algorithms
 - E.g. Metaheuristics
 - These techniques provide an approximation to the Pareto front

- The goal is to find the **Pareto front**
- Exact techniques are **not useful** in most cases
 - NP-hard complexity, non-linearity, epistasis , ...
- Rely on **approximation** techniques
 - Two key features to measure the **quality** of solutions
 - Convergence
 - Diversity

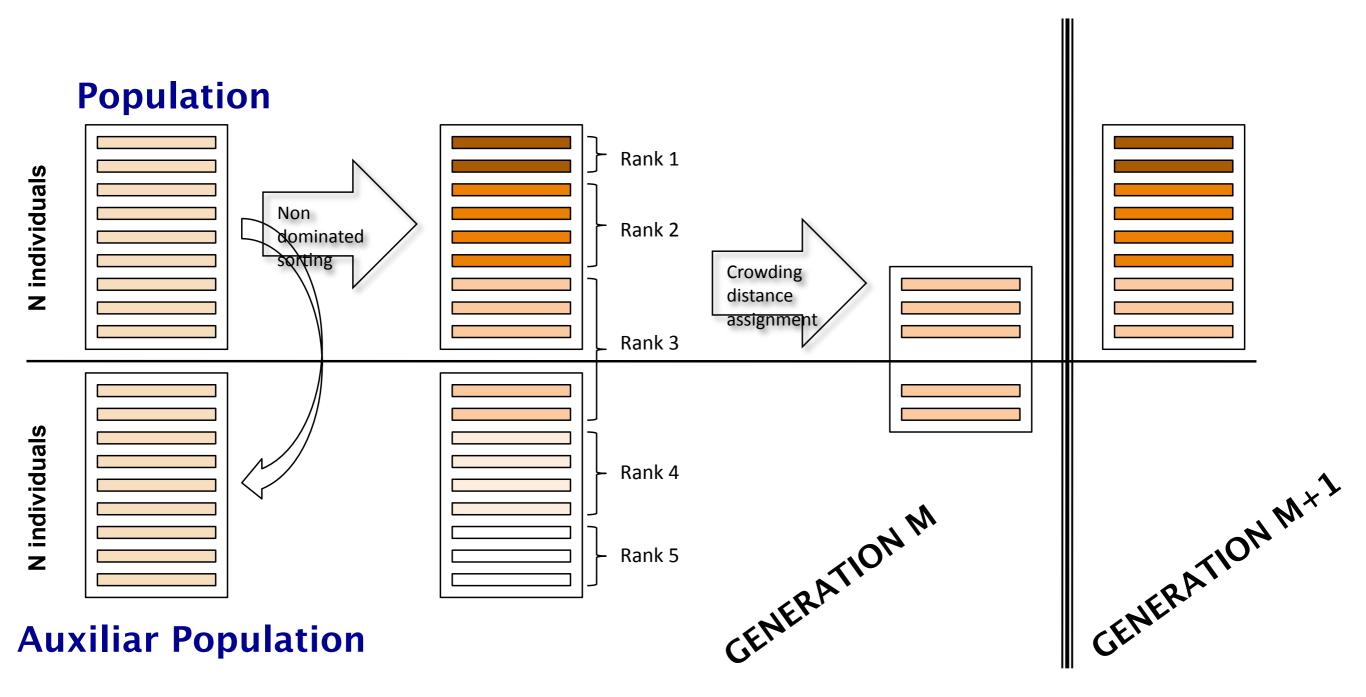


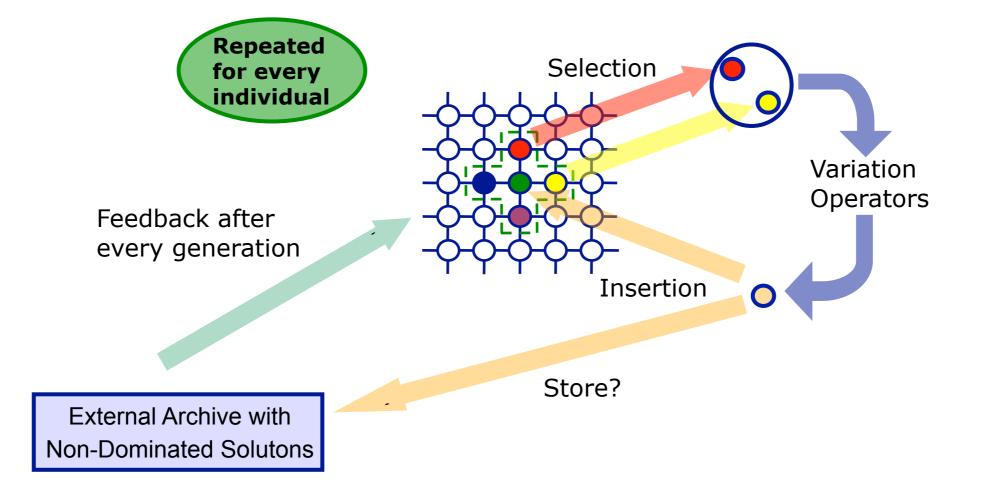
- Non-dominated Sorting Genetic Algorithm
- The most popular metaheuristic for multi-objective optimization
- Features
 - Ranking using non-dominated sorting
 - Crowding distance as density estimator



Point B is in a less crowded region than point A

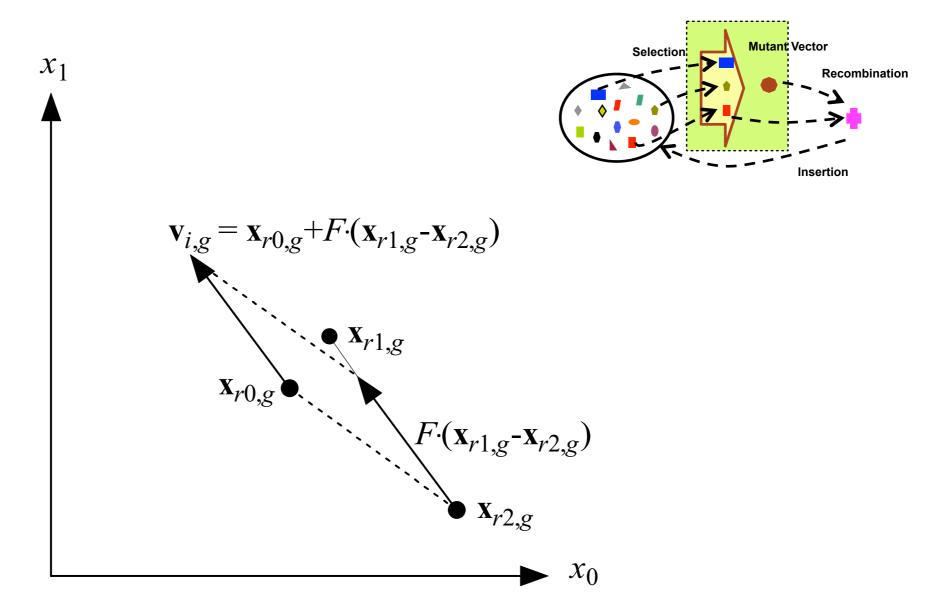
NSGAII





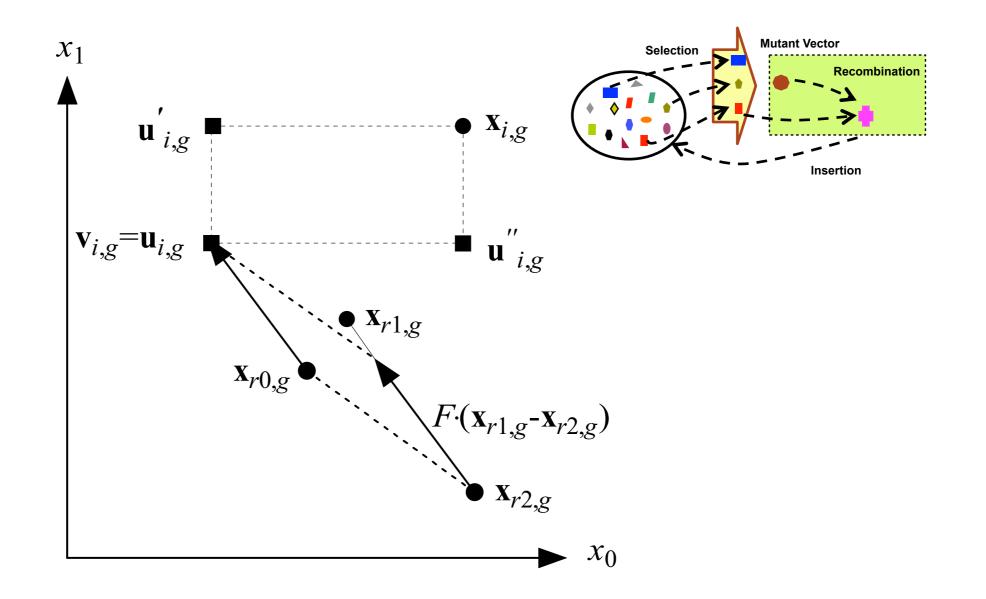
Differential evolution

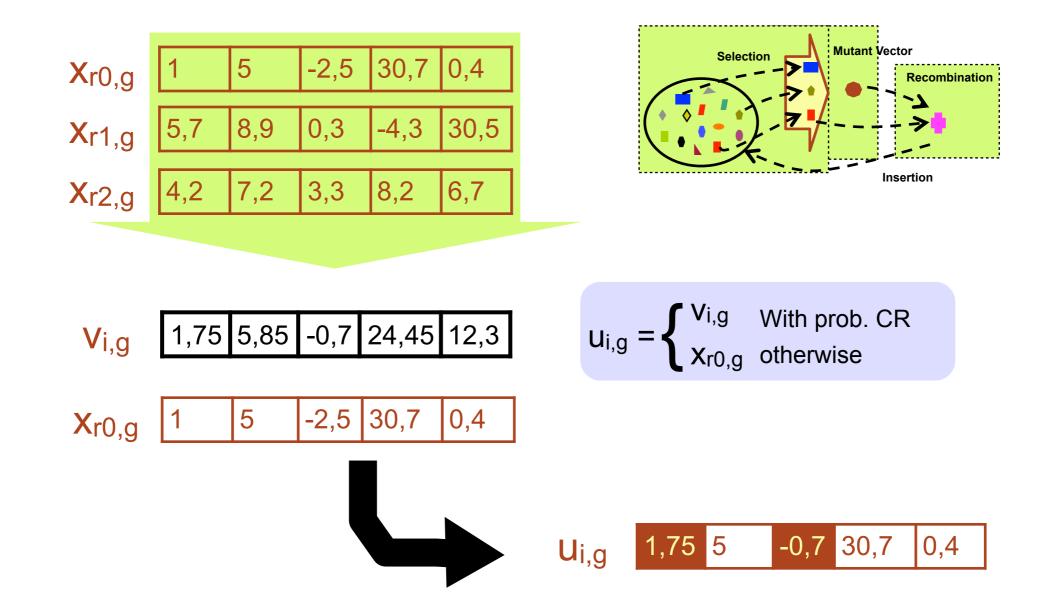
Mutant vector generation



Differential evolution

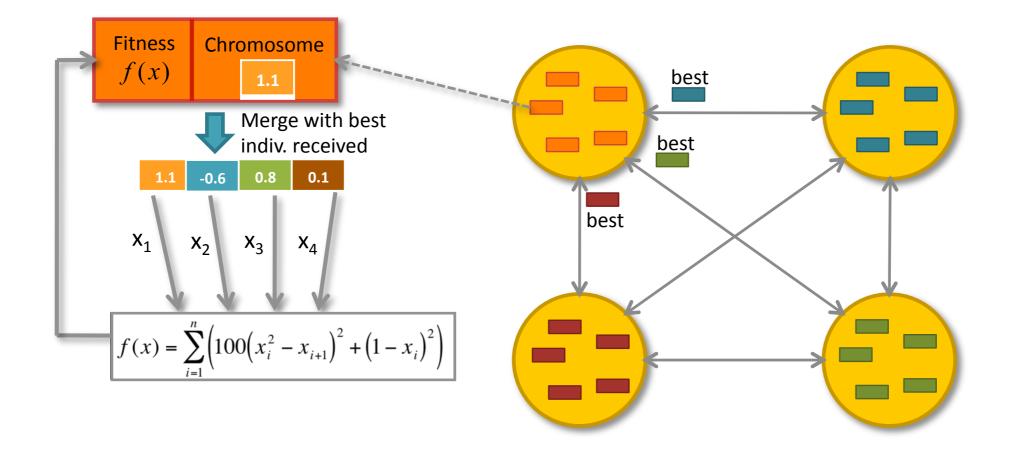
Recombination



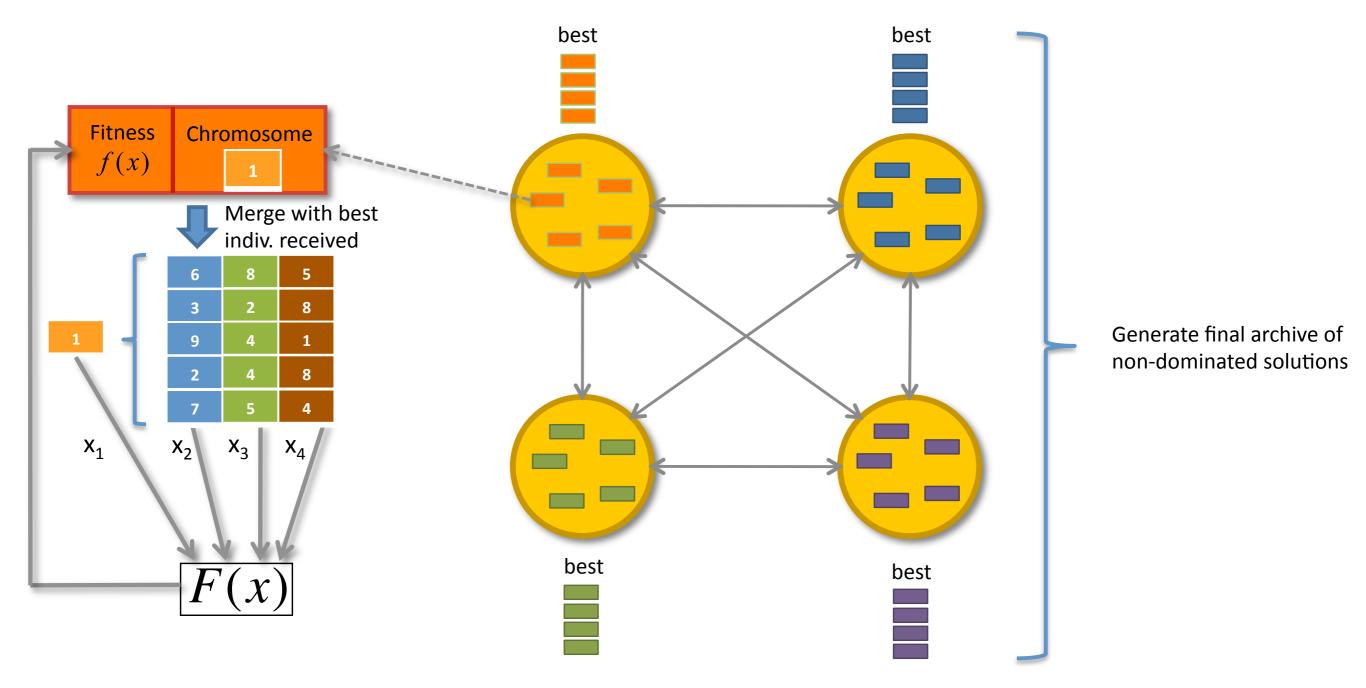


Cooperative Coevolutionary GA (CCGA)

- Universidad de Cádiz
- Each node runs a subpopulation for a subset of the N variables
- Each population evaluates each of its individuals on the global fitness function using the best individual received from each other subpopulation



Multi-objective CCGA



Three new multi-objective CCGAs

- Three CCMOEAs designed
 - Based on NSGA-II: CCNSGAII
 - Based on SPEA2: CCSPEA2
 - Based on MOCell: CCMOCell

NSGA-II

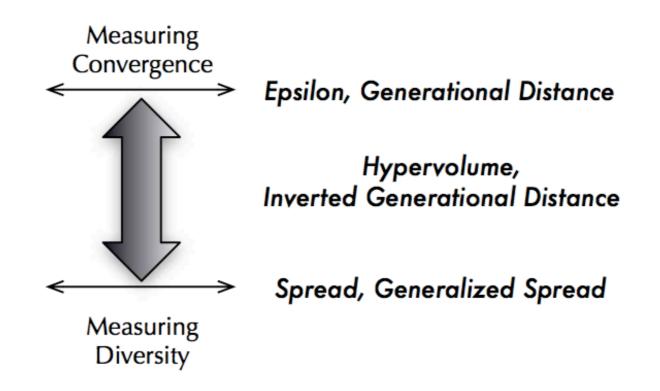
- Reference algorithm
- Panmictic population
- Selection of solutions
 - Ranking
 - Crowding

SPEA2

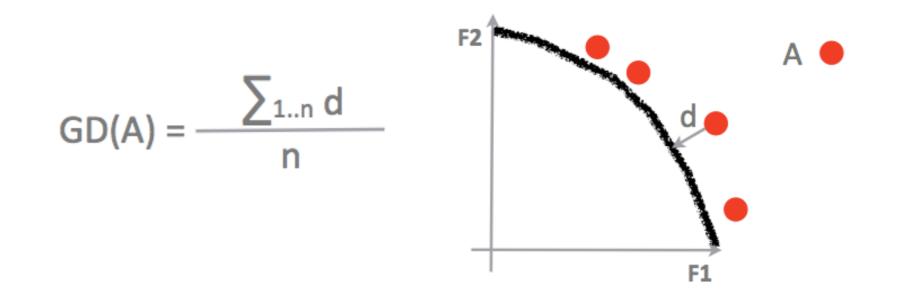
- Panmictic population
- External archive
 - Strength raw fitness
 - k-nearest neighbors

MOCell

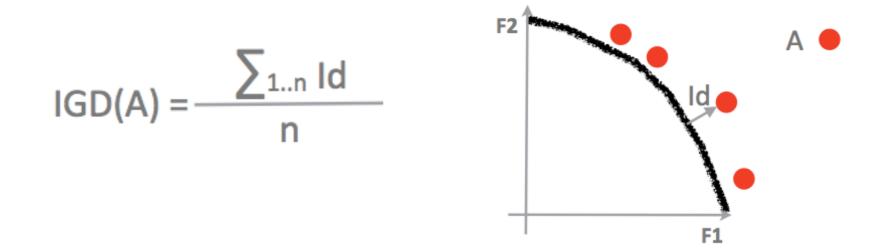
- Cellular population
 - Only next individuals can interact
- External archive
 - Feedback to population



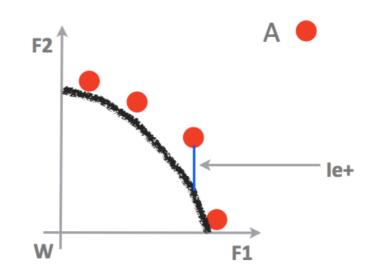
- Generational distance
 - Average distance of every solution of a front A to the Pareto front
 - Convergence to the true Pareto front



- Inverted generational distance
 - Average distance of every solution of the points of the Pareto front to of a front A
 - Convergence to the true Pareto front

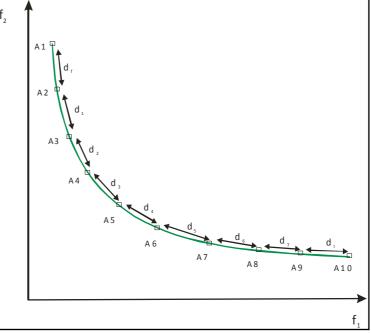


- Additive epsilon indicator
 - Convergence to the Pareto front
 - Given an approximation set A, this indicator is a measure of the smallest distance we would need to translate every solution in A so that it dominates the Pareto front

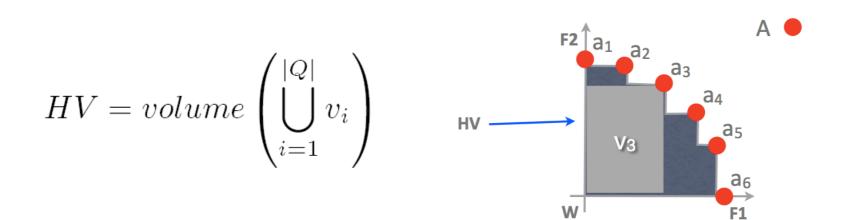


- Spread
 - Diversity of the solutions along the Pareto front

$$\Delta = \frac{d_f + d_l + \sum_{i=1}^{N-1} |d_i - \bar{d}|}{d_f + d_l + (N-1)\bar{d}}$$



- Hypervolume
 - Takes into account both convergence and diversity
 - Measures the region dominated by the obtained font

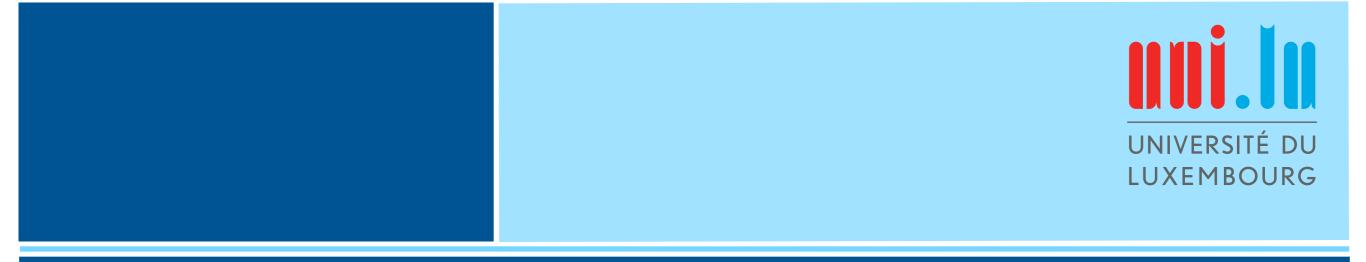


- All discussed metrics require the optimal Pareto front
 - Either for computations
 - Or to normalize the fronts
- What if we do not know it?
 - Build a reference Pareto front of (hopefully) quasi-optimal solutions
 - Run the problem with different algorithms
 - Run every algorithm a large number of times
 - Take the best non-dominated solutions found in all runs by all algorithms

- Metaheuristics are stochastic algorithms
 - Repeating the same experiment may lead to different results
 - It is necessary to apply a rigorous statistical methodology to assess the performance of a metaheuristic
- To draw firm conclusions, we need to look for statistical significance on the results

- Statistical significance
 - Large number of independent runs
 - Compute quality metrics
 - Statistical test on the results of the quality metrics
 - Non-parametric test: Wilcoxon unpaired signed-ranks test
 - Confidence level of 95%
 - Significance level of 5% or p-value under 0.05 in the statistical tests
 - This means that the differences are unlikely to have occurred by chance with a probability of 95%

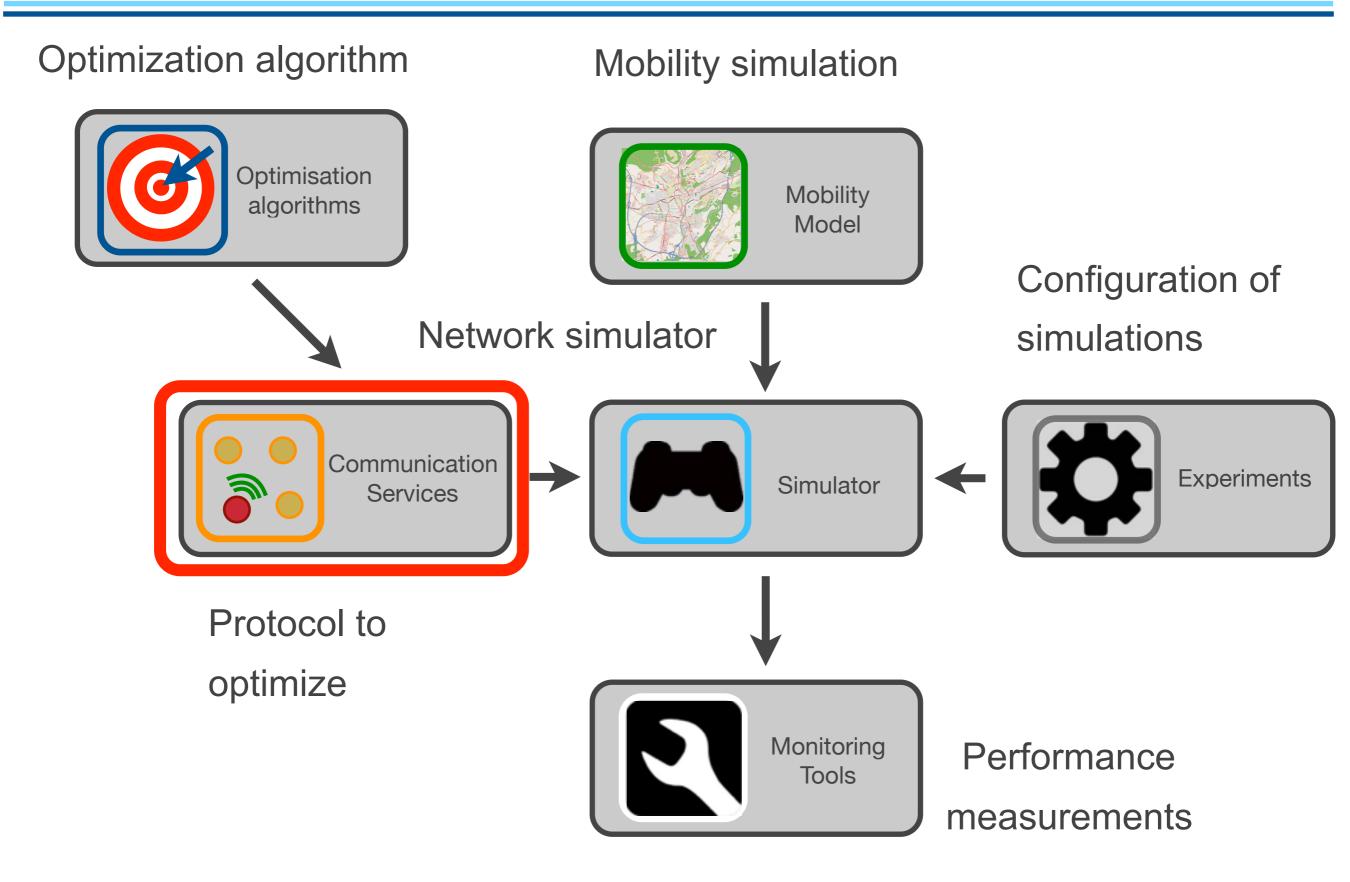
Universidad



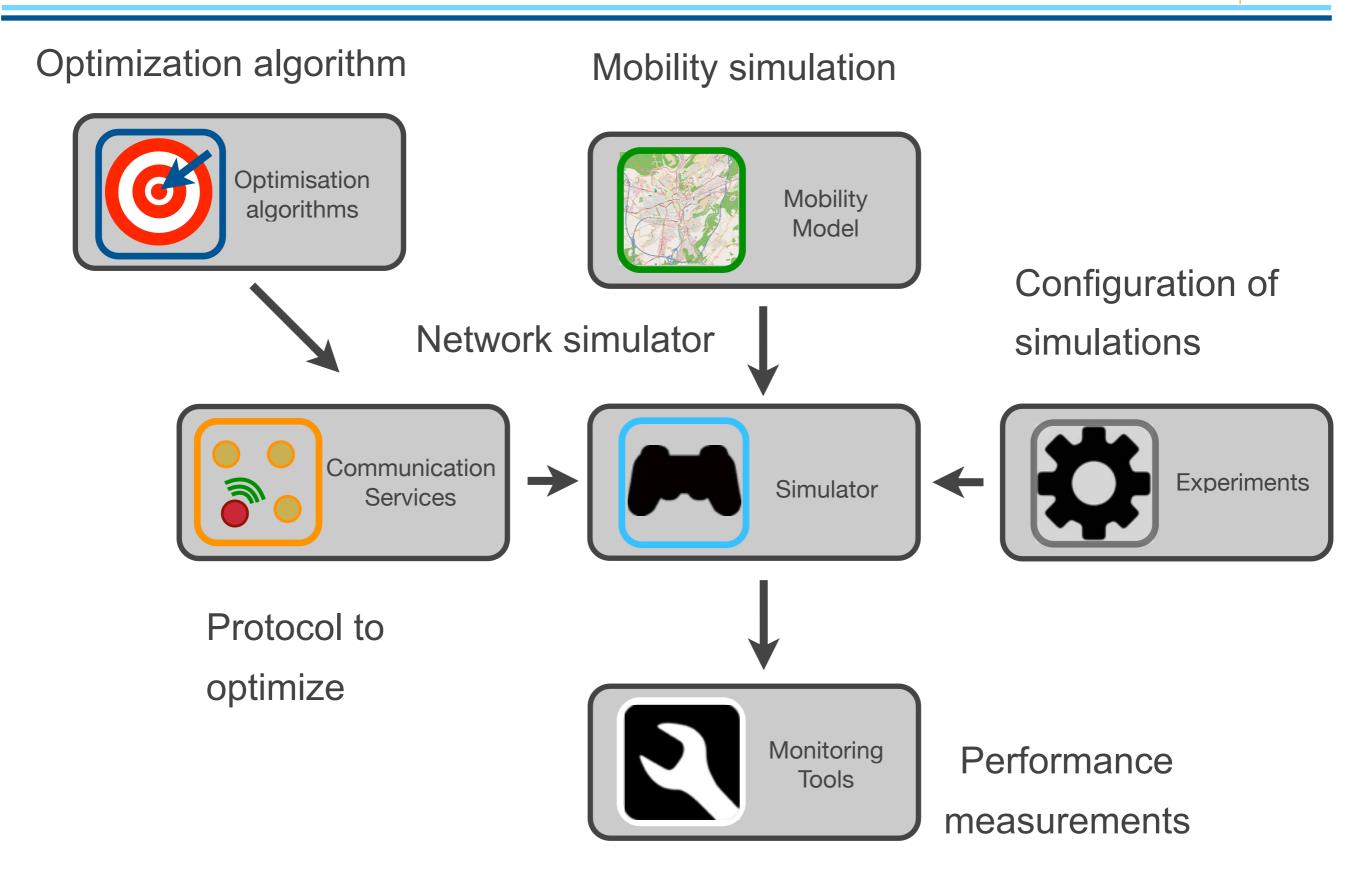
Optimization Framework for Mobile Ad Hoc Networks

☐ FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

AEDB: Experimental Framework



Off-line optimization process



On-line optimization process

Mobility simulation

