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I\_Iletaheuristics and MANETs

* Energy efficiency

* Broadcast

* Routing

* Network to

hology

- Connectivr
- Clustering

- Node depl
* Selfishness

* Security

Y

oyment

» Qualrty of Service
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Metaheuristics and MANETs Y UCA |

* \We can characterise them in terms of

- Operation mode
» Offline
» Online
- Knowledge
» Global
» Local
- Approach

» Centralized
» Decentralized
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Metaheuristics and MANETs \Y UCA
Centralised | Centralised |Decentralised|Decentralised

local
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O Topology Ctrl: Node deployment O Multipath Routing @ Others
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Universidad
de Cadiz

6/ 52



UNIVERSITE DU
LUXEMBOURG

Single-objective

Optimization
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Single-objective optimization W UCA | e

- |Solutions Space]

/
V3 E@ : f()_c;) < f()_i)} Maximization
f(x) = f(x )} Minimization

Global Maximum

Opt(f (X)) = {x’
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DL

Global Minimum
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How to solve optimization problems?

» Complete methods

4 )

They guarantee to find for every finite size instance of
a CO problem an optimal solution in bounded time

- J

- Approximate methods

No guarantee of finding an optimal solution

-

4 p
Only CO
problems!

\ J

4 p

Combinatorial

and Continuous

J

Y UCA

Universidad
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Optimization algorithms classification  “/UCA &

C Optimization Algorithms )
(Approxmate Methods C Complete Methods )
C Heurlstlcs ( Metaheuristics ) Dynamlc. Branch ang
Programming Bound

Constructive Local Population Trajectory
Heuristics Search Based Based \
/ x\ \ Tabu

Search

Evolutionary Ant Colony Particle Swarm Simulated
Algorithms Optimization Optimization Annealing
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Eiversification/lntensification

W UCA | U=

« Metaheuristics must achieve a balance between diversification

and Iintensification

- Diversification: exploration of the search space
- Intensification: explortation of promising regions of the search

space

f(x)

Diversification

f(x)

Intensification
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Concept of neighborhood W UCA | s

» Given a solution s, the neighborhood of s, N(s), Is the set of
solutions of the search space that can be reached using some
kind of transformation on s

f(x)
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Genetic algorithms

» bvolutionary Algorithms (EAs): Useful optimization technigues
for complex problems

- Show a good tradeoff between exploration and explortation

» Based in population

- Individuals = Potential solutions to the problem
» Frtness value: ;How good Is the individual?
- Variation operators => Allow the evolution of the population

» Recombination: Interchange of genetic material
» Mutation: Generation of new genetic material

A T

S @

Solucién Optima Soluciéon Optima
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Genetic algorithms Y UCA | g
- Population evolution

- Improvement of the quality of solutions
- Guided by the fitness function f )

Panmictic

» Application operators

- Stochastic
~ Generic Selection Recombination
_______ S
Popl_JIe_ltion of . ,7.[: N . Mutation
Individuals - :
Z Evaluation //*
Insertion™ == === — = — = - <

Local Search
(Improvement step)
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Cellular genetic algorithms

- Spatially structured population (2-D)

* Breeding loop applied inside small neighborhoods

Selection

Recombinati

0#@#
G- S0 O

00#0 '
I ti
nesron o Mutation
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Cellular genetic algorithms \W UCA g

- Spatially structured population (2-D)

* Breeding loop applied inside small neighborhoods

» Overlapped neighborhoods = Smooth diffusion
- [solation by distance among individuals in the population

- Appropriate exploration/explortation tradeoft

- bExplortation: Inside neighborhoods
- bExploration: Neighborhood borders

Red individual
neighborhood

~dJd
~,) Green individual
neighborhood
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Cellular genetic algorithms Y UCA |z

MAXUT 100 Problem

cGA with L5 genGA Optimum
Better

Worse

Optimum (1077.0) after 33 s Converges to 967.0 after 24s
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Cellular genetic algorithms Y UCA |z

MAXUT 100 Problem

cGA with L5 genGA Optimum
Better

Worse

Optimum (1077.0) after 33 s Converges to 967.0 after 24s
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Cellular genetic algorithms e

MAXUT20 Ol Problem

cGA with L5 genGA Optimum
. I Better I
Worse I

Optimum (10.1198) after 1.9 s Optimum after 18.5s
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Cellular genetic algorithms W UCA |

Percentage of Successful Runs

100

75 }{
50 ‘\

B genGA
dGA
" cGA

I " ssGA
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Cooperative Coevolutionary GAs W UCA i

200 Travelling Salesman Problem
10 | |

1 0250
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Problem Size
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Eosenbrock function

- Part of De Jong's five function test surte

« Continuous and unimodal

n

f(x)= E(lOO(x,.2 - xm)2 + (l — x,.)

=]

7

—_

with -2.12 < x1 < 2.12

* Global minimum f(x")=0
With x" =@.1,..1)

|

2300 +

2000

1300 ~

1000

500
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GA on Rosenbrock (4 variables) W UCA | s

A chromosome encodes a complete solution

» Solution evaluated on the global problem

Individual

GA Population J(x) = E(IOO(xf - xi+l)2 + (1 - xi)z)

i=1
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Loosely Coupled GA (LCGA) W UCA s

* Fach node runs a subpopulation for a subset of the N
variables

» bach population evaluates its individuals on a local
subproblem using a random individual received from Its
neighbor population

F(x) = g(IOO(xf —x,) +(1- x,.)z)

Decom

Dosition

f'(x3,x4)=100 x32 —x47 +(1—x3)2

W« 1

fl(xl,x2)=100 x12 _xzy +(1_ 1 fl(xz,x3)=100(x22 _x3)3+(1_x2)z

Xl X2 1
Cia] o2 (15| 05
f merge f merge

randoms
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Cooperative Coevolutionary GA (CCGA) Y UCA |z

* Fach node runs a subpopulation for a subset of the N
variables

» Fach population evaluates each of its individuals on the

global fitness function using the best individual received
from each other subpopulation

Merge with best
indiv. received

— f(x)= 2(100(,\1,.2 - x,.+1)2 + (1 - x,.)z)
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Multi-objective

Optimization
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Multi-objective optimization

- Many real-world optimization problems require to optimize
more than one objective a

- the same time

hese objectives are usual

y in conflict among them

- Improving one means worsening the others

- Multi-objective (or multi-criteria) optimization

Discipline focused on solvi

broblems ( MOPs )

ng multiobjective optimization

Optimize [, (7) m=12...m

27/ 52



Universidad
de Cadiz

MO optimization: example Y UCA

» Example: travelling by car from Malaga to Madrid (535 km)

- Objective |
INimizing time

- Objective 2:

o

< V.

» Minimizing fuel
- Constraints:

» Max. speed: |20 km/h
» Min. speed: 60 km/h

- Decision variable:
» mean car speed
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MO optimization: example

» Travelling by car from Malaga
to Madrid (535 km)

- Extreme solutions

» Time: 5 hours, fuel: 9.0 litres Time! |
_ | Non-dominated

» Time: 8 hours, fuel: 6.0 litres |

, Dominated

- Other solutions 8 7h. 331
» Time: 5.5 hours, fuel: 7.5 litres 7 ®
» Time: 6 hours, fuel: 6.5 litres 6
5

25 30 35 40 Fuel
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Multi-objective optimization W LCA ez
* In single-objective * In multi-objective
optimization (SO) optimization (MO)
- The optimum s - The optimum (Pareto
» One solution optimal set) Is a set of (non-
» Several ones with same quality dominated) solutions

X F(X) X F(X), G(X), ...
(Solution space) (Objective space) (Solution space) Objective space
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MO Optimization and Decision Making N UCA [sreze

* Finding the Pareto front of a  * In practice, an expert In
broblem is not the last step in the domain (the decision
multi-objective optimization maker) has to choose the
best trade-off solution
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MO Optimization and Decision Making N UCA [sreze

* In the example of traveling
from Malaga to Madrid

* |f time I1s iImportant

- Choose (5h, 401) Time

* [ consumption Is important: 3| o
- Choose (8h, 201 ’ (6h, 301

» Compromise solution: 2 ° ® (5.5h,35|)(5h’40|)
- (6h, 301)

- (5.5h, 350) % 30 35 40  Fuel
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The goal of MO optimization

* The ideal goal Is to obtain the Pareto front

- Unfortunately, this is unpractical in real-world problems

~ NP-

nard complexity, non-linearity, epistasis, ...

- Frec

uently, exact techniques are not useful

- Alternative: Use non-exact algorithms

- b.g. Metaheuristics
- These techniques provide an approximation to the Pareto front
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The goal of MO optimization

* The goal Is to find the Pareto front

- Exact techniques are not useful in most cases
- NP-hard complexity, non-linearity, epistasis, ...

* Rely on approximation techniques

- Two key features to measure the quality of solutions

» Convergence
» Diversity

front returned
by the optimizer
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NSGAII W UCA |4

- Non-dominated Sorting Genetic Algorithm

* The most popular metaheuristic for multi-objective
optimization

* Features

- Ranking using non-dominated sorting
- Crowding distance as density estimator

f, Area representing the crowding distance of point A

Area representing the crowding distance of point B

Rank 3 /

Rank 2 B

Objective 2

Rank 1

Objective 1 3

Point B is in a less crowded region than point A -
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NSGAII
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CellDE

Repeated
for every
individual

Feedback after
every generation

External Archive with
Non-Dominated Solutons

Selection

Insertion

Store?

i

O

Variation
Operators

Y UCA

Universidad
de Cadiz
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Differential evolution W UCA | i

- Mutant vector generation

Mutanf Vector

Selectioni
X1 - —> _. Recombination
A A7) @t~
: | ;
b2 - - >0
\ \\\\\\

Insertion

\\\ F°(Xrl,g'xr2,g)

r2.g

p X0
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Differential evolution W UCA e

 Recombination

Mutant Vector

x 1 Selection

Insertion

T
A TSR,
4 ] :
,,,,,,,,,,,,,,,,,,,,,,,,,, X. - T > E

u;, " ® tig . s
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Differential evolution N UCA | i

Selection

Xrog (1[5 |2o [30.7[04 —= P R

Xr1.g |57 [89 [03 [43 [305 «

Xr2g (42 [72 33 |82 |67 |

Vig |1.75]585]-0,7]24,45[12,3]  uig

Vi.,g  With prob. CR
Xr0,g otherwise

Xrog |1 [5 [-25]30,7 |04

Ui KREI5 EOf30.7 |04
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Cooperative Coevolutionary GA (CCGA) Y UCA |z

* Fach node runs a subpopulation for a subset of the N
variables

» Fach population evaluates each of its individuals on the

global fitness function using the best individual received
from each other subpopulation

Merge with best
indiv. received

— f(x)= 2(100(,\1,.2 - x,.+1)2 + (1 - x,.)z)
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Multi-objective CCGA

Merge with best
indiv. received

N 1 B

2 | als |
| EAENEN
X X X

2 3 4

Vv

X UCA | aogsis

Generate final archive of
non-dominated solutions
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Three new multi-objective CCGAs

* Three CCMOEASs design

ed

- Based on NSGA-Il: CCNSGA|

- Based on SPEA2: CCS

PEAL

- Based on MOCell: CCMOCell

NSGA-II

* Reference algorithm
* Panmictic population
* Selection of solutions
- Ranking
- Crowding

e Pan

- S

SPEA2

mictic population

e External archive

trength raw fitness

- k-nearest neighbors

MOCell

e Cellular population
- Only next individuals
can interact
e External archive
- Feedback to
population

Y UCA

Universidad
de Cadiz
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Quality metrics Y UCA e

Measuring
Convergence
< > Epsilon, Generational Distance

Hypervolume,
Inverted Generational Distance

>  Spread, Generalized Spread

Measuring
Diversity
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Quality metrics

 Generational distance

- Average distance of every solution of a front A to the Pareto
front

- Convergence to the true Pareto front
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Quality metrics

* Inverted generational distance

- Average distance of every solution of the points of the Pareto
front to of a front A

- Convergence to the true Pareto front
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Quality metrics

- Additive epsilon indicator

- Convergence to the Pareto front

- Given an approximation set A, this indicator is a measure of the
smallest distance we would need to translate every solution In
A so that it dominates the Pareto front

le+
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Quality metrics W UCA | s

* Spread

- Diversity of the solutions along the Pareto front

A — df"‘dl‘l'z,fi_llldi—d‘
dy +di+ (N —1)d
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Quality metrics Y UCA e

* Hypervolume

- lakes into account both convergence and diversity
- Measures the region dominated by the obtained font

Q)

HV = volume (U V;

1=1
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Quality metrics

- All discussed metrics require the optimal Pareto front

- Erther for computations
- Or to normalize the fronts

 What if we do not know It/

- Build a reference Pareto front of (hopefully) quasi-optimal
solutions

» Run the problem with different algorithms
» Run every algorithm a large number of times
» Take the best non-dominated solutions found in all runs by all algorithms
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Methodology for comparing algorithms

- Metaheuristics are stochastic algorithms

- Repeating the same experiment may lead to different results

- It 1s necessary to apply a rigorous statistical methodology to
assess the performance of a metaheuristic

* To draw firm conclusions, we need to look for statistical
significance on the results
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Methodology for comparing algorithms

- Statistical significance

- Large number of independent runs
- Compute quality metrics

- Statistical test on the results of the quality metrics
» Non-parametric test: Wilcoxon unpaired signed-ranks test

- Confidence level of 95%

» Significance level of 5% or p-value under 0.05 in the statistical tests

» This means that the differences are unlikely to have occurred by chance
with a probability of 95%
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AEDB: Experimental Framework G UCA i

Optimization algorithm Mobility simulation

Optimisation

algorithms Mobility

Configuration of

\ Network simulator l simulations

Communication .

Protocol to l
optimize

Monitoring Performance
Tools

measurements
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Off-line optimization process W UCA |4

Optimization algorithm Mobility simulation

Optimisation

algorithms Mobility

Configuration of

\ Network simulator l simulations

Communication .

Protocol to l
optimize

Monitoring Performance
Tools

measurements

55/ 56



On-line optimization process W UCA | e

Mobility simulation

Mobility

Configuration of
Network simulator

simulations
Simulator Experiments
Communication
Services
Protocol to
optimize

Monitoring Performance
Tools

measurements
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