Bernabé Dorronsoro Patricia Ruiz

bernabe.dorronsoro@uca.es www.bernabe.dorronsoro.es patricia.ruiz@uca.es patriciaruiz.es

Optimization for Protocol Tuning

☐ FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

Network Wide Broadcast Problem

Motivations: Broadcast Algorithms

Broadcast nature of wireless networks

Cornerstone in networking

- Main kinds of broadcast protocols
 - Context oblivious
 - Flooding
 - Based on probabilities
 - Context aware
 - Neighborhood knowledge (I-hop, 2-hops)
 - Distances

Broadcast storm problem


```
if (!handled) {
    resend();
    handled = true;
}
```

simple flooding

Simple flooding and variants

• simple flooding, 100 devices, 500x500m, 100m coverage

Universidad de Cádiz


```
if (!handled) {
    resend();
    handled = true;
}
```

simple flooding

```
if (!handled) {
    if (haveMoreNeighborsThanSender()) flooding w/ 2-hop neighborhood
        resend();
    handled = true;
}
```

• two hop flooding, 100 devices, 500x500m, 100m coverage

9/299

Universidad de Cádiz


```
if (!handled) {
  resend();
                                        simple flooding
  handled = true;
}
if (!handled) {
  if (haveMoreNeighborsThanSender())
                                        flooding w/ 2-hop neighborhood
    resend();
  handled = true;
if (!handled) {
  waitRandomTime();
                                        flooding w/ 2-hop neighborhood
  if (haveMoreNeighbors ThanSender())
    resend();
                                        and random wait
  handled = true;
```

Simple flooding and variants

• two hop 100 ms, 100 devices, 500x500m, 100m coverage

nodes

nodes

of receivers

Impact of topology and starting device

Network wide broadcasting problem

Flooding with Multpoint Relays

- Multipoint Relays
 - Subset of neighboring nodes used to disseminate control information
 - Build "backbone" for route selection
 - But: how to guarantee ''full coverage''?
- Definitions:
 - N(Ni): set of (direct) neighbors of Ni
 - N2(Ni): set of nodes reachable in exactly 2 hops from Ni
 - MPR(Ni): set of multipoint relays selected by Ni

- Multipoint Relay must adhere to following conditions:
 - MPR(Ni) must be subset of N(Ni)
 - Every node from within N2(Ni) must be reachable (directly) from at least one member of MPR(Ni)
- Note explicitly: we don't require MPR(Ni) to be minimal
 - However, the fewer nodes in MPR(Ni), the more savings ...

MPR determination

- Algorithm to determine MPR(Ni)
 - Start with $MPR(Ni) = \{\}$
 - For all nodes in N2(Ni) having a single link to a node Nk in N(Ni) only, add Nk to MPR(Ni)
 - As long as there are nodes in N2(Ni) not being reachable from nodes in MPR(Ni):
 - Add to MPR(Ni) those node from N(Ni) via that the most non-reachable nodes from N2(Ni) can be reached
 - If there are multiple such nodes, select the one having the most neighbors
 - As long as there are nodes Nk in MPR(Ni) such that from MPR(Ni)\{Nk} all nodes from N2(Ni) are still reachable, then discard Nk from MPR(Ni)

Flooding revisited

Delayed Flooding with Cumulative Neighbourhood (DFCN)

Delayed Flooding with Cumulative Neighb.^{WUCA}

- DFCN is an efficient broadcasting algorithm
- DFCN aims to minimize the network load taking into account the network density and also to avoid collisions
- DFCN attaches to the BC message a list with the neighbors of the sender
- Messages are univocally identified
- A message received more than once is discarded
- DFCN has
 - Proactive behavior
 - Reactive behavior

Universidad de Cádiz

Delayed Flooding with Cumulative Neighb. WUCA

- When receiving a message Reactive behavior
 - Set a Random Assessment Delay (RAD)
 - When RAD expires, take forwarding decision
 - If density ≤ safeDensity
 - Add neighbors in the message
 - Forward the message
 - Otherwise compute benefit of forwarding
 - If benefit ≥ minBenefit
 - Add neighbors in the message
 - Forward the message

Universidad

Delayed Flooding with Cumulative Neighb.^{WUCA}

- When a new neighbor is detected Proactive behavior
 - Avoid collisions
 - If the number of neighbors < proD
 - Set RAD to 0
- For sparse networks
 - Message is immediately candidate for resubmission
 - Promotion of diffusion

Universidad

- DFCN relies on different thresholds:
 - minBenefit: minimum gain for rebroadcasting
 - RAD interval: random delay before rebroadcasting
 - IowerBoundRAD
 - upperBoundRAD
 - ▶ lowerBoundRAD ≤ upperBoundRAD
 - proD: maximum number of neighbors for which it is still needed to use proactive behavior
 - safeDensity: maximum value of the local network density for rebroadcasting all messages

Multi-objective Optimization of DFCN

☐ FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

Optimization of DFCN

- Maximize coverage
- Minimize number of messages
- Minimize broadcasting time

Population size	100 (ssGA, NSGAII)
	10×10 (cGA, CellDE)
	$100 \times$ number of subpopulations (CCGA, CCNSGAII)
Termination Condition	10,000 function evaluations
Selection	Binary tournament (BT)
	Current individual $+$ BT for cGA
Neighborhood	C9 for cellular topologies
Crossover probability	$p_{c} = 1.0$
Mutation probability	$p_m = 1/\text{chrom_length}$

Problem representation

minBenefit	lowerBo undRAD	upperBo undRAD	proD	safeDensity
Double	Double	Double	Integer	Integer

• CCNSGAII

minBenefit	lowerBo undRAD	upperBo undRAD	proD	safeDensity
16 bits	16 bits	16 bits	8 bits	8 bits

Optimization algorithm parameters

Variable ranges

minGain	[0.0, 1.0]
lowerBoundRAD	[0.0, 10.0] seconds
upperBound RAD	[0.0, 10.0] seconds
nroD	[0, 100] devices
safeDensitu	[0, 100] devices
eager cherry	

DFCN broadcasting protocol

- Network simulator: ns3
- Transmission power: 16.02 dBm
- Signal loss model: Log distance
- IEEE 802.11b
- Simulation sime: 40 s

- Mobility simulator: ns3
- Random waypoint mobility model
- Speed: [0, 2] m/s
- Direction and speed change: every 20 s

- Square area 500m x 500m
- Different network densities
 - 100 devices / km²
 - 200 devices / km^2
 - 300 devices / km^2
- Runs on 10 different networks (10 fixed seeds)

- Process the output of the simulator
 - Number of devices reached
 - Number of forwardings
 - Broadcast time

Comparison of the algorithms

Universidad de Cádiz

- Three algorithms
- Thirty independent runs
- One hundred non-dominated solutions per run
- Three network densities

9,000 solutions for every density!

- How to choose the best solutions?
 - Build one single Pareto front from all non-dominated solutions

- Strength raw fitness
- Crowding
- Adaptive grid

Universida de Cádiz

- Proposed in SPEA2
- Two steps to assign a fitness value to a solution s:
 - Step I: Strength Fitness

 f_2

- Strength fitness of s: number of individuals in the population dominated by s
- Step 2: Raw Fitness
 - Raw Fitness of s: sum of the strength fitness of the solutions dominating s

Solutions 1 and 2 dominate solution 5

Solution	Strength fit.	Raw fitness	
1	2	0	
2	3	0	
3	3	0	
4	<u> </u>	<u>0</u>	
5	1	5	
6	1	8	
7	0	4	
8	0	10	

- Proposed in PAES
- The objective space is divided up in hypercubes
- Hypercubes are squares, in bi-objective problems

A point belonging to the most populated region is selected

Crowding

- Proposed in NSGAII
- Estimator of density in the area of the solution

Point B is in a less crowded region than point A

Aggregated Pareto front

100 Dev. NSGAII CellDE + CCNSGAII DFCN Time Coverage Forwardings

Solutions dominating DFCN

Universidad
de Cádiz

${\rm dev./km^2}$	Solution	Forwardings $(\%)$	Coverage $(\%)$	Time
	DFCN	25.60	54.80	5.1212
	$\mathbf{Sol1}$	22.80	58.40	4.8054
100	$\mathbf{Sol2}$	22.80	58.00	3.2082
100	Sol3	20.40	57.20	1.7476
	Sol4	24.40	63.20	2.3648
	$\mathbf{Sol5}$	25.60	57.60	0.2682
	DFCN	13.80	49.40	6.0320
	Sol6	12.40	52.00	0.0042
	Sol7	12.60	69.00	6.0276
200	Sol8	13.60	55.60	1.3358
200	Sol9	11.20	58.20	5.1376
	Sol10	9.00	55.00	5.2180
	Sol11	8.00	52.00	4.1517
	Sol12	12.60	53.40	3.9389
300	DFCN	10.27	50.27	6.2294
	Sol13	7.20	52.53	4.0212
	Sol14	10.27	58.93	5.0449
	Sol15	8.40	51.73	0.6933

$dev./km^2$	Solution	\min Gain	RAD	proD	safeDensity	Algorithm
	DFCN	0.4	[0.0, 7.0]	4	12	_
	Sol1	0.2559279959314381	$\left[0.37838939855767806, 9.120589620531833\right]$	84	3	NSGAII
	Sol2	0.3106136104098672	$\left[0.0, 3.77622653439971 ight]$	11	0	CellDE
100	Sol3	0.3137985713985266	$\left[0.0, 1.8166803587138693 ight]$	88	7	CellDE
	Sol4	0.29569050500280863	$\left[0.28417307413411563, 1.879038038884\right]$	62	5	NSGAII
	Sol5	0.30190793008451416	$\left[0.00216725071262841, 0.17757174835303718\right]$	82	9	NSGAII
	Sol6	0.5244789246681958	[0.0, 0.0]	68	12	CellDE
	Sol7	0.23262266938338613	[10.0, 10.0]	67	12	CellDE
	Sol8	0.45138885098745435	$\left[0.005853573465718576, 1.4167981490052637\right]$	73	5	NSGAII
200	Sol9	0.35188367053794545	[10.0, 10.0]	18	24	CellDE
	Sol10	0.2935923314536946	[10.0, 10.0]	23	10	CellDE
	Sol11	0.2874099031627282	[10.0, 10.0]	43	3	CellDE
	Sol12	0.48537600157429095	$\left[0.421648485009434, 2.8308110208460655\right]$	37	11	NSGAII
300	Sol13	0.46147023817982497	$\left[0.010781467931704425, 4.261884410159036\right]$	74	2	NSGAII
	Sol14	0.410847243200888	$\left[2.5014487499316895, 4.601211573914485 ight]$	38	13	CellDE
	Sol15	0.4977711892032174	$\left[0.06103145898364451, 0.5542608402159395\right]$	79	10	NSGAII

- Optimization of a protocol for MANETs
 - Broadcasting protocol
 - Importance of broadcasting in MANETS
 - Difficulty of broadcasting in MANETS
 - Otimization of DFCN:
 - Coverage
 - Number of forwardings
 - Time
- Performance comparison (NSGAII, CellDE, CCNSGAII)
- Selection of a representative set of Pareto solutions
- Many configurations outperforming DFCN