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Network Wide 

Broadcast Problem
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Broadcast nature of wireless networks 

Cornerstone in networking
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Motivations: Broadcast Algorithms
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Network wide broadcasting 
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• Main kinds of broadcast protocols
- Context oblivious
‣ Flooding
‣ Based on probabilities

- Context aware
‣ Neighborhood knowledge (1-hop, 2-hops)
‣ Distances
‣ Counters Broadcasting 

algorithms
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The broadcast storm problem

55

Broadcast storm problem
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Simple flooding and variants
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if (!handled) {
resend();
handled = true;

}

simple flooding
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Simple flooding and variants
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• simple flooding, 100 devices, 500x500m, 100m coverage
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Simple flooding and variants
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if (!handled) {
resend();
handled = true;

}

if (!handled) {
if (haveMoreNeighborsThanSender())

resend();
handled = true;

}

simple flooding

flooding w/ 2-hop neighborhood
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Simple flooding and variants
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• two hop flooding, 100 devices, 500x500m, 100m coverage

8
messages 

saved
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Simple flooding and variants
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if (!handled) {
if (haveMoreNeighborsThanSender())

resend();
handled = true;

}

if (!handled) {
resend();
handled = true;

}

simple flooding

flooding w/ 2-hop neighborhood

if (!handled) {
waitRandomTime();
if (haveMoreNeighbors ThanSender())

resend();
handled = true;

}

flooding w/ 2-hop neighborhood 
and random wait
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Simple flooding and variants
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• two hop 100 ms, 100 devices, 500x500m, 100m coverage

16
messages 

saved
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if (!handled) {
resend();
handled = true;

}
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if (!handled) {
waitRandomTime();
if (haveMoreNeighbors ThanSender())

resend();
handled = true;

}

Broadcasts
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Impact of topology and starting device
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Flooding with 

Multpoint Relays

18

Network wide 
broadcasting problem



/ 299

Multipoint relays
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• Multipoint Relays
- Subset of neighboring nodes used to disseminate control 

information
- Build “backbone” for route selection
- But: how to guarantee “full coverage”?

• Definitions:
- N(Ni): set of (direct) neighbors of Ni
- N2(Ni): set of nodes reachable in exactly 2 hops from Ni
- MPR(Ni): set of multipoint relays selected by Ni
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Multipoint relays
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• Multipoint Relay must adhere to following conditions:
- MPR(Ni) must be subset of N(Ni)
- Every node from within N2(Ni) must be reachable (directly) 

from at least one member of MPR(Ni)
• Note explicitly: we don’t require MPR(Ni) to be minimal

- However, the fewer nodes in MPR(Ni), the more savings …
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Multipoint relay example
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MPR determination
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• Algorithm to determine MPR(Ni)
- Start with MPR(Ni) = {}
- For all nodes in N2(Ni) having a single link to a node Nk in 

N(Ni) only, add Nk to MPR(Ni)
- As long as there are nodes in N2(Ni) not being reachable from 

nodes in MPR(Ni):
‣ Add to MPR(Ni) those node from N(Ni) via that the most non-reachable 

nodes from N2(Ni) can be reached
➡ If there are multiple such nodes, select the one having the most neighbors

- As long as there are nodes Nk in MPR(Ni) such that from 
MPR(Ni)\{Nk} all nodes from N2(Ni) are still reachable, then 
discard Nk from MPR(Ni)
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MPR determination example
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MPR determination example
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MPR determination example
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MPR determination example
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MPR determination example
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MPR determination example
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N4 not yet reachable from MPR(N1) 
→ add node from that most (non-reachable) nodes can be reached 

→ add N6 to MPR(N1) because it has the most children

MPR(N1)

N2(N1)
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MPR determination example
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Flooding revisited
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MPR-Flooding
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Simple vs. MPR-flooding
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Delayed Flooding with Cumulative 

Neighbourhood (DFCN)
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Delayed Flooding with Cumulative Neighb.

34

• DFCN is an efficient broadcasting algorithm
• DFCN aims to minimize the network load taking into account 

the network density and also to avoid collisions
• DFCN attaches to the BC message a list with the neighbors of 

the sender
• Messages are univocally identified
• A message received more than once is discarded
• DFCN has

- Proactive behavior
- Reactive behavior
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Delayed Flooding with Cumulative Neighb.
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• When receiving a message — Reactive behavior
- Set a Random Assessment Delay (RAD)
- When RAD expires, take forwarding decision
- If density ≤ safeDensity
‣ Add neighbors in the message
‣ Forward the message

- Otherwise compute benefit of forwarding
- If benefit ≥ minBenefit
‣ Add neighbors in the message
‣ Forward the message

 | TotalNumberOfNeighbors - NeighborsWithMessage | 

TotalNumberOfNeighbors
   benefit  =
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Delayed Flooding with Cumulative Neighb.
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• When a new neighbor is detected — Proactive behavior
- Avoid collisions
- If the number of neighbors < proD
- Set RAD to 0

• For sparse networks
- Message is immediately candidate for resubmission
- Promotion of diffusion
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DFCN configuration parameters
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• DFCN relies on different thresholds:
- minBenefit: minimum gain for rebroadcasting
- RAD interval: random delay before rebroadcasting
‣ lowerBoundRAD
‣ upperBoundRAD 
‣ lowerBoundRAD ≤ upperBoundRAD

- proD: maximum number of neighbors for which it is still 
needed to use proactive behavior

- safeDensity: maximum value of the local network density for 
rebroadcasting all messages



Multi-objective 

Optimization of DFCN

38
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Optimization of DFCN
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Mobility

Model

Monitoring

Tools

ExperimentsSimulator
Communication


Services

Protocol to 
optimize 

Network simulator
Configuration of 
simulations

Mobility simulation 

Performance  
measurements

Optimisation

algorithms

Optimization algorithm
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Optimization algorithm
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• Maximize coverage
• Minimize number of messages
• Minimize broadcasting time
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DFCN optimization problem representation
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• Problem representation

• CCNSGAII

minBenefit lowerBo
undRAD

upperBo
undRAD

proD safeDensity

Double Double Double Integer Integer

minBenefit lowerBo
undRAD

upperBo
undRAD

proD safeDensity

16 bits 16 bits 16 bits 8 bits 8 bits
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Optimization algorithm parameters
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• DFCN broadcasting protocol

• Variable ranges
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Network and mobility simulators parameters
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• Network simulator : ns3
• Transmission power: 16.02 dBm
• Signal loss model: Log distance
• IEEE 802.11b
• Simulation sime: 40 s

• Mobility simulator : ns3
• Random waypoint mobility model
• Speed: [0, 2] m/s 
• Direction and speed change: every 20 s
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Configuration of simulations and performance
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• Process the output of the simulator
- Number of devices reached
- Number of forwardings
- Broadcast time

• Square area 500m x 500m
• Different network densities

- 100 devices / km2

- 200 devices / km2

- 300 devices / km2

• Runs on 10 different networks (10 fixed seeds)



/ 55

Comparison of the algorithms
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Performance of solutions
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• Three algorithms
• Thirty independent runs
• One hundred non-dominated solutions per run
• Three network densities

• How to choose the best solutions?
- Build one single Pareto front from all non-dominated solutions

9,000 solutions for every density!
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Pareto management techniques
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• Strength raw fitness
• Crowding
• Adaptive grid
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Strength raw fitness
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• Proposed in SPEA2
• Two steps to assign a fitness value to a solution s:

- Step 1: Strength Fitness
‣ Strength fitness of s: number of individuals in the population dominated by 

s
- Step 2: Raw Fitness 
‣ Raw Fitness of s: sum of the strength fitness of the solutions dominating s

Solutions 1 and 2 
dominate solution 5 

f2 

f1 

1

2

3

4

6

7

5 8

Solution Strength fit. Raw fitness 

1 2 0 

2 3 0 

3 3 0 

4 1 0 

5 1 5 

6 1 8 

7 0 4 

8 0 10 
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Adaptive grid
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• Proposed in PAES
• The objective space is divided up in hypercubes
• Hypercubes are squares, in bi-objective problems

A point belonging to the most populated region is selected 

New solution 
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Crowding
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• Proposed in NSGAII
• Estimator of density in the area of the solution

Area%represen)ng%the%crowding%distance%of%point%A%

Area%represen)ng%the%crowding%distance%of%point%B%

f2%

f1%

B%

A%

Point%B%is%in%a%less%crowded%region%than%point%A%
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Aggregated Pareto front
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• NSGAII 
• CellDE 
+ CCNSGAII 
■ DFCN
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Solutions dominating DFCN
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Dominating DFCN 
•100 dev: 262 Sols 
•200 dev: 233 Sols 
•300 dev: 185 Sols
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Solutions dominating DFCN from Pareto front
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Solutions dominating DFCN from Pareto front
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Conclusions
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• Optimization of a protocol for MANETs
- Broadcasting protocol
‣ Importance of broadcasting in MANETS
‣ Difficulty of broadcasting in MANETS

- Otimization of DFCN:
‣ Coverage
‣ Number of forwardings
‣ Time

• Performance comparison (NSGAII, CellDE, CCNSGAII)
• Selection of a representative set of Pareto solutions
• Many configurations outperforming DFCN


