Bernabé Dorronsoro Patricia Ruiz

bernabe.dorronsoro@uca.es www.bernabe.dorronsoro.es patricia.ruiz@uca.es patriciaruiz.es

Optimization of Energy use in AEDB Broadcasting Protocol

☐ FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

Adaptive Enhanced Distance Based Broadcasting (AEDB)

☐ FACULTY OF SCIENCES, TECHNOLOGY AND COMMUNICATION

Distance based

- candidates to forward message are selected in terms of distance
- selected candidates set a timeout

Cross-layer design

Use power needed to get the furthest neighbours

Advantages of reducing the transmission power:

- reduce the energy consumption
- reduce the interference level and pollution
- help the dissemination

Cross-layer design

"Protocol design by the violation of a reference layered communication architecture is a cross-layer design with respect to the particular layered architecture" [SM05]

Universidad de Cádiz Cross-layer design

Use power needed to get the furthest neighbours

Advantages of reducing the transmission power:

- reduce the energy consumption
- reduce the interference level and pollution

С

 \bigcirc

ЮB

help the dissemination

Adaptive Enhanced Distance Based, AEDB^{[®]UCA}

In dense networks:

- Iow energy reduction
- the dissemination process is easier

Universidad de Cádiz

AEDB: Experimental Framework

AEDB: Simulation Results

AEDB is lives yo a confiftent et in tetra la sof:

- meh/Derlayesonaxeselay
- ▶ **nœveria T**e
- boedgysused
- beighloastsime

- **Borders_Threshold**: the size of the forwarding area
- *margin_Forwarding*: extra amount of energy added to the estimated one
- neighbours_Threshold: number of nodes in the forwarding area
- **delay_interval**: the value of the delay. Different techniques were studied:
 - random delay \in [0 1]
 - fixed delay inversely proportional to the received power (*powerDelay*)

 $\ensuremath{\textcircled{}}$ nodes further have shorter delay

- random delay \in [0 *powerDelay*]
- stoping or not the delay when a copy is heard

Best option NON STOP with Random delay \in [0 1]

Multi-objective Optimization of AEDB

Optimization of AEDB

- Maximize coverage
- Minimize number of messages
- Minimize energy used
- Minimize broadcasting time

Population size	100 (ssGA, NSGAII)
	10×10 (cGA, CellDE)
	$100 \times$ number of subpopulations (CCGA, CCNSGAII)
Termination Condition	10,000 function evaluations
Selection	Binary tournament (BT)
	Current individual $+$ BT for cGA
Neighborhood	C9 for cellular topologies
Crossover probability	$p_{c} = 1.0$
Mutation probability	$p_m = 1/\mathrm{chrom_length}$

Problem representation

BordersT	lowerBo undRAD	upperBo undRAD	ForwardT	neighbT
Double	Double	Double	Double	Integer

• CCNSGAII

BordersT	lowerBo undRAD	upperBo undRAD	ForwardT	neighbT
32 bits	32 bits	32 bits	32 bits	8 bits

Optimization algorithm parameters

- Maximize coverage
- Minimize number of messages
- Minimize energy use
- Subject to broadcasting time ≤ 2 s

minGain	[0.0, 1.0]
lowerBoundRAD	[0.0, 10.0] seconds
upperBoundRAD	[0.0, 10.0] seconds
proD	[0, 100] devices
safeDensity	[0, 100] devices

AEDB broadcasting protocol

- Network simulator: ns3
- Transmission power: 16.02 dBm
- Signal loss model: Log distance
- IEEE 802.11b
- Simulation sime: 40 s

- Mobility simulator: ns3
- Random waypoint mobility model
- Speed: [0, 2] m/s
- Direction and speed change: every 20 s

- Square area 500m x 500m
- Different network densities
 - 100 devices / km²
 - 200 devices / km^2
 - 300 devices / km^2
- Runs on 10 different networks (10 fixed seeds)

- Process the output of the simulator
 - Number of devices reached
 - Number of forwardings
 - Broadcast time
 - Energy used

MO: Sensitivity Analysis

neighboursT Coverage maxDelay minDelay

Bc Time

bordersT neighboursT Energy used # forwardings

Generic cutting edge algorithms

Problem specific parallel local search

Generic cutting edge algorithms:

- explore different regions of the search space at the same time
- most suitable algorithms for multi-objective optimisation

Non-dominated Sorting Genetic Algorithm, NSGAII^[DPA02]

reference algorithm in MO

Cellular Differential Evolutionary algorithm, CellDE^[DNL08]

cellular MO with DE

MO: Parallel Iterated Local Search, AEDB-MLSA Universidad

Coverage **Bc Time Energy used #Forwards**

AEDB-MLS: Simulation results

Pareto front 30 executions & AEDB

Solutions that outperform AEDB

100/200/300 d/km2 -> 11/17/1 solutions

All solutions that outperform AEDB 349-201 100/200/300 d/km2 -> 527-343 solutions 53-29

Universidad de Cádiz

Pareto front 30 executions Reference & AEDB-MLS

Reference and AEDB-MLS fronts

Compare fronts:

- Inverted generational distance
 - measures the accuracy
- Spread
 - measures the diversity
- Hypervolume
 - measures accuracy and diversity

Comparison of the algorithms

according to Wilcoxon test

Spread			
CellDE		▲	
NSGAII		$- \nabla \nabla$	
Inverted generational distance			
CellDE	$\nabla \nabla -$		
NSGAII			
Hypervolume			
CellDE	∇ ∇ ∇		
NSGAII			
	NSGAII	AEDB-MLS	

AEDB-MLS is 38 times faster and performs 2.4 times more evaluations

AEDB was optimised using:

- NSGAII & CellDE
- AEDB-MLS

Pareto fronts were compared in terms of:

- inverted generational distance
- spread
- hypervolume
- execution time

Restrict solutions:

coverage achieved > 80%

forwarding nodes < 30%

select the ones that save more energy

Comparison of the solutions according to Wilcoxon test

	Energy used	Coverage	Forwarding
100dSol2			
100dSol4			
100dSol5		∇	
200dSol2		∇	
200dSol3			
200dSol5		∇	
300dSol3			
300dSol4		∇	
300dSol8		∇	

Plotting Selected Sols over 100 Networks WUCA

Universidad de Cádiz

$$F (\vec{s}) = \begin{cases} Min \{mean (\vec{e})\} \\ Max \{mean (\vec{c})\} \\ Min \{mean (\vec{f})\} \end{cases}$$

$$F_{m}(\vec{s}) = \begin{cases} Min \{t(e)\} \\ Max \{t(c)\} \\ Min \{t(f)\} \end{cases} s.t.: t (bt) < 2 \\ t = median_{cov}(R) \end{cases}$$

$$F_{c}(\vec{s}) = \begin{cases} Min \{mean (\vec{e}')\} \\ Max \{mean (\vec{c}')\} \\ Min \{mean (\vec{f}')\} \end{cases}$$

s.t.: s.t. mean (
$$\vec{bt}$$
) <2
stdev (\vec{e} ') ≤ 0.3 * mean (\vec{e} ')
stdev (\vec{c} ') ≤ 0.3 * mean (\vec{c} ')
stdev (\vec{f} ') ≤ 0.3 * mean (\vec{f} ')

$$F_{wc}(\vec{s}) = \begin{cases} Min \{t(e)\} \\ Max \{t(c)\} \\ Min \{t(f)\} \end{cases} s.t.: t (bt) < 2 \\ t = worst_{cov}(R') \end{cases}$$

$$F_{whv}(\vec{s}) = \begin{cases} Min \{t(e)\} \\ Max \{t(c)\} \\ Min \{t(f)\} \end{cases} s.t.: t (bt) < 2 \\ t = worst_{hv}(R') \end{cases}$$

Comparison of the solutions

according to Wilcoxon test

	Energy used	Coverage	Forwarding
Average		∇	
Median		∇	
Constrained		∇	
Worst Coverage		∇	
Worst HV	∇		∇