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1. Creation of a Tomcat Server in Eclipse (i)

• REMINDER: it is recommended to 

create a folder for the workspace, for 

instance inside the root folder 

created for the software installation 

(Development)

• We open Eclipse and select the 

workspace where we will store the 

created projects.

• We create a Tomcat server instance:

File→ New→ Other→ Server→ Server
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1. Creation of a Tomcat Server in Eclipse (ii)

• Select Tomcat 9 and click Next

• We select the folder where we 

have installed the Tomcat and the 

JRE we desire to use.

• For the JRE we have to select the 

installed JDK. Usually, by default, 

it is JRE selected. If so, follow 

the steps in the following slide. 
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1. Creation of a Tomcat Server in Eclipse (iii)

How to select the JDK: Click on Installed JRE

• OPTION 1. If  the JDK is not in the list, follow the 

steps below:

• Click on the Installed JRE→ Add→ Standard 

VM →Next

• In the pop-up screen, select the folder where the 

JDK  is installed. Then click on Finish

• Now follow OPTION 2 Steps
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1. Creation of a Tomcat Server in Eclipse (iv)

• OPTION 2. If  the JDK is in the list:

• Click on Installed JRE→ Select the 

JDK and click OK.

• It may happen that after clicking OK in 

the following Windows the JRE is yet 

selected. You have to open the 

deployable list, select the JDK and 

Finish.
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1. Creation of a Tomcat Server in Eclipse (v)

Start the Apache Tomcat server:

• In the down part of Eclipse, we have to click on the Server tab and there the Tomcat should be (Stopped):

• In order to launch the server we right-click on it and select Start. We wait until the start is finished, once finished we 

will see that the server status is Started, Synchronized:

• NOTE: To see the servers view in Eclipse, Window→ Show View→ Server → Servers.
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2. Dynamic Web Project Creation

• We create a Dynamic Web Project 

named HelloWorld:

• New →Dynamic Web Project

• Fill in Project name and select 

the Tomcat recently created as 

the Target runtime and→

Finish

• VERY IMPORTANT: Respect 

upper-case and lower-case 

conventions for Java, specially for 

the first letter
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3. Jersey Library Inclusion

• We copy Jersey libraries in WebContent/WEB-

INF/lib (we should have unzipped them previously)

• If they are not shown inside the folder after pasting 

them, you should refresh the project (Right click on 

the project → Refresh)
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4. Package and Class Creation (i)

• We create a package 
inside the 
JavaResources/src
name packageName.

• VERY 
IMPORTANT: 
Respect upper-case 
and lower-case 
conventions for Java, 
specially for the first 
letter
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4. Package and Class Creation (ii)

• We create the class Hello and we 

introduce the code in the following 

slide.

• VERY IMPORTANT: Respect 

upper-case and lower-case 

conventions for Java, specially 

for the first letter
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4. Package and Class Creation (iii)

package packageName;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;
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@Path("/hello")

public class Hello { 

@GET

@Produces(MediaType.TEXT_PLAIN)

public String
sayPlainTextHello(){return "Hello
Plain";}

}

NOTE: Do not forget to save the file after pasting or
modifying the code

Use the package

name you chose

Use the class

name you chose
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5. web.xml File Creation (i)

• We create web.xml file 
in WebContent/WEB-
INF

• The XML editor opens 
automatically. Click on 
“Source” in  the tab 
below  to see it in text 
mode.

• We copy the code in 
the following slide and 
we save it.
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5. web.xml File Creation (ii)

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns="http://java.sun.com/xml/ns/javaee" 

xmlns:web="http://java.sun.com/xml/ns/javaee/web-

app_2_5.xsd" 

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" 

id="WebApp_ID" version="3.0">
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5. web.xml File Creation (iii)

<servlet>

<servlet-name>My REST service </servlet-name>

<servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-

class>

<init-param>

<param-name>jersey.config.server.provider.packages</param-name>

<param-value> 

packageName,com.fasterxml.jackson.jaxrs.json</param-value>

</init-param>

</servlet>
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Replace by

your package

name



5. web.xml File Creation (iv)

<servlet-mapping>

<servlet-name>My REST service </servlet-name>

<url-pattern>/demo/*</url-pattern>

</servlet-mapping>

</web-app>

NOTE: depending on the operating system the quotation marks are copied wrongly. Revise them 
when you get an error.

NOTE: You can create first the class and then the web.xml or vice-versa.
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6. Service API Deployment

• We deploy the service in the Tomcat server previously 
created: Right click on the project → Run as → Run on 
Server → We select the server created →Finish

• We will be asked to restart the server → we click on OK

• If everything worked fine in the deployment, the service 
will appear as synchronized.

• Otherwise, we will have to click in the console to see the 
error.

• Do not worry if you get a 404 error in the browser.

• NOTE: To see the console window, problems or error 
log: Window→ Show View→ General→ corresponding option
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7. Testing it from Postman

• We can use any rest client, 

for instance Postman

• Fill in the address to 

invoke:

http://localhost:8080/HelloWorld

/demo/hello
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Your project
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