
REST API Security

Creating a Basic REST API

Guadalupe Ortiz Bellot

Computer Science and Engineering Department

Contents

1. Creation of a Tomcat Server in Eclipse

2. Web dynamic project creation

3. Jersey library inclusion

4. Package and class creation

5. web.xml file creation

6. Service deployment in the service

7. Testing it from Postman

2

Contents

1. Creation of a Tomcat Server in Eclipse

2. Dynamic web project creation

3. Jersey library inclusion

4. Package and class creation

5. web.xml file creation

6. Service deployment in the service

7. Testing it from Postman

3

1. Creation of a Tomcat Server in Eclipse (i)

• REMINDER: it is recommended to

create a folder for the workspace, for

instance inside the root folder

created for the software installation

(Development)

• We open Eclipse and select the

workspace where we will store the

created projects.

• We create a Tomcat server instance:

File→ New→ Other→ Server→ Server

4

1. Creation of a Tomcat Server in Eclipse (ii)

• Select Tomcat 9 and click Next

• We select the folder where we

have installed the Tomcat and the

JRE we desire to use.

• For the JRE we have to select the

installed JDK. Usually, by default,

it is JRE selected. If so, follow

the steps in the following slide.

5

1. Creation of a Tomcat Server in Eclipse (iii)

How to select the JDK: Click on Installed JRE

• OPTION 1. If the JDK is not in the list, follow the

steps below:

• Click on the Installed JRE→ Add→ Standard

VM →Next

• In the pop-up screen, select the folder where the

JDK is installed. Then click on Finish

• Now follow OPTION 2 Steps

6

1. Creation of a Tomcat Server in Eclipse (iv)

• OPTION 2. If the JDK is in the list:

• Click on Installed JRE→ Select the

JDK and click OK.

• It may happen that after clicking OK in

the following Windows the JRE is yet

selected. You have to open the

deployable list, select the JDK and

Finish.

7

1. Creation of a Tomcat Server in Eclipse (v)

Start the Apache Tomcat server:

• In the down part of Eclipse, we have to click on the Server tab and there the Tomcat should be (Stopped):

• In order to launch the server we right-click on it and select Start. We wait until the start is finished, once finished we

will see that the server status is Started, Synchronized:

• NOTE: To see the servers view in Eclipse, Window→ Show View→ Server → Servers.

8

Contents

1. Creation of a Tomcat Server in Eclipse

2. Web dynamic project creation

3. Jersey library inclusion

4. Package and class creation

5. web.xml file creation

6. Service deployment in the service

7. Testing it from Postman

9

2. Dynamic Web Project Creation

• We create a Dynamic Web Project

named HelloWorld:

• New →Dynamic Web Project

• Fill in Project name and select

the Tomcat recently created as

the Target runtime and→

Finish

• VERY IMPORTANT: Respect

upper-case and lower-case

conventions for Java, specially for

the first letter

10

Contents

1. Creation of a Tomcat Server in Eclipse

2. Dynamic Web project creation

3. Jersey library inclusion

4. Package and class creation

5. web.xml file creation

6. Service deployment in the service

7. Testing it from Postman

11

3. Jersey Library Inclusion

• We copy Jersey libraries in WebContent/WEB-

INF/lib (we should have unzipped them previously)

• If they are not shown inside the folder after pasting

them, you should refresh the project (Right click on

the project → Refresh)

12

Contents

1. Creation of a Tomcat Server in Eclipse

2. Dynamic Web project creation

3. Jersey library inclusion

4. Package and class creation

5. web.xml file creation

6. Service deployment in the service

7. Testing it from Postman

13

4. Package and Class Creation (i)

• We create a package
inside the
JavaResources/src
name packageName.

• VERY
IMPORTANT:
Respect upper-case
and lower-case
conventions for Java,
specially for the first
letter

14

4. Package and Class Creation (ii)

• We create the class Hello and we

introduce the code in the following

slide.

• VERY IMPORTANT: Respect

upper-case and lower-case

conventions for Java, specially

for the first letter

15

4. Package and Class Creation (iii)

package packageName;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

16

@Path("/hello")

public class Hello {

@GET

@Produces(MediaType.TEXT_PLAIN)

public String
sayPlainTextHello(){return "Hello
Plain";}

}

NOTE: Do not forget to save the file after pasting or
modifying the code

Use the package

name you chose

Use the class

name you chose

Contents

1. Creation of a Tomcat Server in Eclipse

2. Dynamic Web project creation

3. Jersey library inclusion

4. Package and class creation

5. web.xml file creation

6. Service deployment in the service

7. Testing it from Postman

17

5. web.xml File Creation (i)

• We create web.xml file
in WebContent/WEB-
INF

• The XML editor opens
automatically. Click on
“Source” in the tab
below to see it in text
mode.

• We copy the code in
the following slide and
we save it.

18

5. web.xml File Creation (ii)

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:web="http://java.sun.com/xml/ns/javaee/web-

app_2_5.xsd"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

id="WebApp_ID" version="3.0">

19

5. web.xml File Creation (iii)

<servlet>

<servlet-name>My REST service </servlet-name>

<servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-

class>

<init-param>

<param-name>jersey.config.server.provider.packages</param-name>

<param-value>

packageName,com.fasterxml.jackson.jaxrs.json</param-value>

</init-param>

</servlet>

20

Replace by

your package

name

5. web.xml File Creation (iv)

<servlet-mapping>

<servlet-name>My REST service </servlet-name>

<url-pattern>/demo/*</url-pattern>

</servlet-mapping>

</web-app>

NOTE: depending on the operating system the quotation marks are copied wrongly. Revise them
when you get an error.

NOTE: You can create first the class and then the web.xml or vice-versa.

21

Optional

Contents

1. Creation of a Tomcat Server in Eclipse

2. Dynamic Web project creation

3. Jersey library inclusion

4. Package and class creation

5. web.xml file creation

6. Service API deployment

7. Testing it from Postman

22

6. Service API Deployment

• We deploy the service in the Tomcat server previously
created: Right click on the project → Run as → Run on
Server → We select the server created →Finish

• We will be asked to restart the server → we click on OK

• If everything worked fine in the deployment, the service
will appear as synchronized.

• Otherwise, we will have to click in the console to see the
error.

• Do not worry if you get a 404 error in the browser.

• NOTE: To see the console window, problems or error
log: Window→ Show View→ General→ corresponding option

23

Contents

1. Creation of a Tomcat Server in Eclipse

2. Dynamic Web project creation

3. Jersey library inclusion

4. Package and class creation

5. web.xml file creation

6. Service deployment in the service

7. Testing it from Postman

24

7. Testing it from Postman

• We can use any rest client,

for instance Postman

• Fill in the address to

invoke:

http://localhost:8080/HelloWorld

/demo/hello

25

Your project

nameIncluded in

web.xml

Class

annotation

Support Bibliography and References

• Developing RESTful Services with JAX-RS 2.0, WebSockets, and JSON. By: Masoud

Kalali; Bhakti Mehta. Publisher: Packt Publishing Pub. Date: October 15, 2013. Print

ISBN-13: 978-1-78217-812-5

• REST with Java (JAX-RS) using Jersey - Tutorial Lars Voguel

https://www.vogella.com/tutorials/REST/article.html

• Postman API Client - Postman Inc.

https://www.postman.com/product/api-client/

26

https://www.vogella.com/tutorials/REST/article.html
https://www.postman.com/product/api-client/

