

Sistemas Inteligentes Grado en Ingeniería Informática elisa.guerrero@uca.es Departamento Ingeniería Informática

Unit 2. Metaheuristics: single solution approaches

Example of a SAT problem resolution

1 Introduction

This problem was taken from http://www.udlap.mx/~leolopez/TabooSearch.htm and the solution has been adapted and written according to the taboo algorithm we have previously studied in this unit 2.

2 Problem definition

SAT (Satisfiability) problems aim at finding the best assignment for a number of variables in order to minimize C(x) function, restricted to some constraints which can penalize the potential solutions.

Let's assume the following Sat problem with 5 variables:

F(x)=20 x₁ + 25 x₂ - 30 x₃ - 45 x₄ + 40 x₅ where $x_j = \{0, 1\}, j = 1,...,5$

Constraints:

 $x_{1} + x_{2} - x_{3} + x_{4} + x_{5} \ge 1$ $x_{1} + x_{2} - x_{4} + 2x_{5} \ge 2$ $-x_{2} + x_{4} + x_{5} \le 1$ $x_{2} + x_{3} + x_{5} \le 2$

Penalization: Each constraint violation costs:

- 70 (per each) for the two first constraints
- 100 (per each) for the two last constraints

The final cost to minimize is:

C(x) = F(x) + Penalization(x)

Actions: Swap the value of each variable (0 or 1)

- There exists a taboo list per each variable of the function.
- The taboo tenure is set to 4 iterations
- Best solution found until now is kept

3 SAT Resolution using Taboo Search

From this initial state: x^0 (1, 0, 0, 0, 1) where the final cost is C(x^0)= 60

Initial solution: $x^0 = (1, 0, 0, 0, 1), c(x^0) = 60$ Taboo list = (0, 0, 0, 0, 0)Initially: Best solution: $x^0 = (1, 0, 0, 0, 1), c(x^0)=60$

Iteration 1: $x^0(1, 0, 0, 0, 1)$

Successor states obtained from the current state

$m_1(x^0) : x_1 = 0$	x = (0,0,0,0,1)	=>	C(x) = 40
$m_2(x^0): x_2=1$	x = (1,1,0,0,1)	=>	C(x)= 85
m ₃ (x ⁰): x ₃ =1	x = (1,0,1,0,1)	=>	C(x)= 30*
$m_4(x^0):x_4=1$	x = (1,0,0,1,1)	=>	C(x)=15+100=115
$m_5(x^0):x_5=0$	$\mathbf{x} = (1,0,0,0,0)$	=>	C(x)=20+70=90

- The best successor is $x^{1}(1, 0, 1, 0, 1)$, $C(x^{1}) = 30$
- This option x^1 is not taboo: Current solution: $x = (1, 0, 1, 0, 1), C(x^1) = 30$
 - Taboo list = (0 0 4 0 0) Keep the taboo tenure for variable 3 Best solution: $x^1 = (1,0,1,0,1)$, $C(x^1) = 30$

Iteration 2: $x^1 = (1,0,1,0,1)$

Successor states obtained from the current state

$m_1(x^1) : x_1 = 0$	$x = (0,0,1,0,1) \Longrightarrow C(x) = 10 + 70 = 80*$
$m_2(x^1) : x_2 = 1$	$x = (1,1,1,0,1) \Longrightarrow C(x) = 55 + 100 = 155$
$m_3(x^1) : x_3 = 0$	$x = (1,0,0,0,1) \Longrightarrow C(x) = 60$ T
$m_4(x^1) : x_4 = 1$	$x = (1,0,1,1,1) \Longrightarrow C(x) = -15 + 100 = 85$
$\mathbf{m}_5(\mathbf{x}^1):\mathbf{x}_5=0$	$x = (1,0,1,0,0) \Longrightarrow C(x) = -10 + 140 = 130$

- Best successor $x^2 = (1, 0, 0, 0, 1), C(x^2) = 60$ •
- x^2 is taboo and the aspiration criterion is not met
- Next best successor $x^2 = (0, 0, 1, 0, 1), C(x^2) = 80$
- This option x^2 is not taboo:

- Solution $x^2 = (0, 0, 1, 0, 1), C(x^2) = 80$
- Taboo list = (40300) (tenure values must be decreased in each iteration)
- Best solution: $x^1 = (1, 0, 1, 0, 1), C(x^1) = 30$

Iteration 3: $x^2 = (0, 0, 1, 0, 1)$

Successor states obtained from the current state

$$m_1(x^2) : x_1 = 0 \qquad x = (1,0,1,0,1) \Longrightarrow C(x) = 30 T$$

$$m_2(x^2) : x_2 = 1 \qquad x = (0,1,1,0,1) \Longrightarrow C(x) = 35 + 100 = 135$$

$$m_3(x^2) : x_3 = 0 \qquad x = (0,0,0,0,1) \Longrightarrow C(x) = 40 T$$

$$m_4(x^2) : x_4 = 1 \qquad x = (0,0,1,1,1) \Longrightarrow C(x) = -35 + 170 = 135$$

$$m_5(x^2) : x_5 = 0 \qquad x = (0,0,1,0,0) \Longrightarrow C(x) = -30 + 140 = 110*$$

- First successor is taboo and it does not improve the Best
- Next best successor is taboo and it does not improve the Best
- Next best successor x³=(0,0,1,0,0), C(x³)=110
- This option is not taboo:
 - Current solution $x^3 = (0,0,1,0,0), C(x^3) = 110$
 - Taboo list = (3, 0, 2, 0, 4)
 - Best solution: $x^1 = (1,0,1,0,1), C(x^1) = 30$

Iteration 4: $x^{3} = (0,0,1,0,0),$

Successor states obtained from the current state

$m_1(x^3) : x_1 = 1$	x = (1,0,1,0,0) => C(x)= 130 T
$m_2(x^3) : x_2 = 1$	$x = (0,1,1,0,0) \Longrightarrow C(x) \cong 35 + 100 \cong 135$
$m_3(x^3): x_3 = 0$	$x = (0,0,0,0,0) \Longrightarrow C(x) = 40 + 100 = 140 T$
$m_4(x^3): x_4 = 1$	$x = (0,0,1,1,0) \Longrightarrow C(x) = 65$
$\mathbf{m}_5(\mathbf{x}^3):\mathbf{x}_5=0$	x = (0,0,1,0,1) => C(x)=80 T

- Best successor $x^3 = (0,0,1,1,0), C(x^3) = 65$
- This option is not taboo:
 - Current solution $x^4 = (0,0,1,1,0), C(x^3) = 65$
 - Taboo list = (2, 0, 1, 4, 3)
 - Best solution: $x^1 = (1,0,1,0,1), C(x^1) = 30$

Iteration 5: $x^4 = (0, 0, 1, 1, 0)$,

Successor states obtained from the current state

$m_1(x^4) : x_1 = 1$	$x = (1,0,1,1,0) \Longrightarrow C(x) = 15 T$
$m_2(x^4) : x_2 = 1$	$x = (0,1,1,1,0) \Longrightarrow C(x) = 20$
$m_3(x^4) : x_3 = 0$	$x = (0,0,0,1,0) \Longrightarrow C(x) = 25$
$m_4(x^4) : x_4 = 1$	$x = (0,0,1,0,0) \Longrightarrow C(x) = 110$
$m_5(x^4): x_5 = 0$	$x = (0,0,1,1,1) \Longrightarrow C(x) = 135$

Best successor $x^5 = (1,0,1,1,0), C(x^5) = 15$

- This option is taboo and Improve the best current solution (Aspiration criterion)
 - Current solution $x^{5} = (1,0,1,1,0), C(x^{5}) = 15$ Best solution: $x^{5} = (1,0,1,1,0), C(x^{5}) = 15$

 - \circ Taboo list = (4, 0, 0, 3,2)

Iteration 6: $x^5 = (1 \ 0 \ 1 \ 1 \ 0)$

Successor states obtained from the current state

 $m_1(x^5): x_1 = 0$ $x = (0,0,1,1,0) \Longrightarrow C(x) = 65 T$ $m_2(x^5): x_2 = 1$ $x = (1,1,1,1,0) \implies C(x) = 40 *$ $m_3(x^5): x_3 = 0$ $x = (1,0,0,1,0) \Longrightarrow C(x) = 45$ $m_4(x^5): x_4 = 0$ $x = (1,0,1,0,0) \Longrightarrow C(x) = 130 T$ $m_5(x^5): x_5 = 1$ $x = (1,0,1,1,1) \implies C(x) = 85 T$

Best successor $x^6 = (1,1,1,1,0), C(x^6) = 40$

- This option is not taboo and it does not improve the best solution:
 - Current solution $x^6=(1,1,1,1,0)$, $C(x^6)=40$ Best solution: $x^5 = (1,0,1,1,0)$, $C(x^5) = 15$

 - \circ Taboo list = (3, 0, 0, 2,1)

After 6 iterations the "optimal" solution is:

 $x^* = (1,0,1,1,0) \text{ con } C(x^*)=15$