

GENETIC OPERATORS

In this exercise we study three genetic operators: **Selection, Crossover and Mutation:** 1. Read de basics of each operator

2. Classify each method into one of the 3 operators

SELECTION OPERATOR

Decide which individuals will breed a new generation.

- The key idea is to give preference to better individuals, allowing them to pass on their genes to the next generation.
- The goodness of each individual depends on its fitness.
- Some individuals will be selected more than once, while others will die without leaving any descent.

CROSSOVER OPERATOR

- Two individuals are chosen from the population using the selection operator.
- The two new offspring created from this mating are put into the next generation of the population.
- By recombining portions of good individuals, this process is likely to create even better individuals.

MUTATION OPERATOR

- Alter each gene independently with a probability p_m
- p_m is called the mutation rate
 - Typically between 1/pop_size and 1/ chromosome_length

METHOD 1: Choose a random point on the two parents

- Split parents at this point
- Create children by exchanging tails
- P_c typically in range (0.6, 0.9)

METHOD 2: Insertion

- Pick two allele values at random
- Place the first to follow the second, shifting the rest along to accommodate
- Note that this preserves most of the order and the adjacency information

v = (1 9 8 7 6 5 4 3 2) v' = (1 9 7 6 5 8 4 3 2)

METHOD 3 – Roulette Wheel

- Assign to each individual a part of the roulette wheel, based on the evaluation function
- Spin the wheel n times to select n individuals

METHOD 4: Inversion

```
Invert the order of a sub-chain

v = (1 \ 9 \ 8 \ | \ 7 \ 6 \ 5 \ 4 \ | \ 3 \ 2)
```

v' = (1 9 8 | **4 5 6 7** | 3 2)

METHOD 5: Tournament

• Pick k members at random, then select the best of these

• Repeat to select more individuals

METHOD 6: Bit Flip (Binary)

We select one or more random bits and flip them (from 0 to 1 or viceversa)

METHOD 7: PMX

- 1. Two points are selected at random (or determined before execution) $p_1 = (1 \ 2 \ 3 \ | \ 4 \ 5 \ 6 \ 7 \ | \ 8 \ 9)$ $p_2 = (4 \ 5 \ 2 \ | \ 1 \ 8 \ 7 \ 6 \ | \ 9 \ 3)$
- 2. The central part of one parent is mapped to the central area of the other parent:

 $s_1 = (x \ x \ x \ | \ 1 \ 8 \ 7 \ 6 \ | \ x \ x)$ $s_2 = (x \ x \ x \ | \ 4 \ 5 \ 6 \ 7 \ | \ x \ x)$

taking into account the interchanges: 1/4, 8/5, 7/6, y 6/7

2. Then, the values that are not in conflict (already inserted) are added to each offspring:

For example value 1 in p1 already exists in s1, then we look for the next value $p_1 = (1 \ 2 \ 3 \ | \ 4 \ 5 \ 6 \ 7 \ | \ 8 \ 9)$ $s1 = (x \ 2 \ 3 \ | \ 1 \ 8 \ 7 \ 6 \ | \ x \ 9)$ $p_2 = (4 \ 5 \ 2 \ | \ 1 \ 8 \ 7 \ 6 \ | \ 9 \ 3)$ $s2 = (x \ x \ 2 \ | \ 4 \ 5 \ 6 \ 7 \ | \ 9 \ 3)$

3. Finally, the values in conflict must be replaced by the interchanges: 1/4, 8/5, 7/6, y 6/7

For example value 1 in p1 already exists in s1, the interchange was 1/4, thus, value 4 is added instead

 $s1 = (4 \ 2 \ 3 \ | \ 1 \ 8 \ 7 \ 6 \ | \ 5 \ 9)$ $s2 = (1 \ 8 \ 2 \ | \ 4 \ 5 \ 6 \ 7 \ | \ 9 \ 3)$

METHOD 8: OX

From a substring of p1, and preserving the relative order of the p2:

- 1. Two points are selected at random (or determined before execution)
 - $p_1 = (1 \ 2 \ 3 \ | \ 4 \ 5 \ 6 \ 7 \ | \ 8 \ 9)$ $p_2 = (4 \ 5 \ 2 \ | \ 1 \ 8 \ 7 \ 6 \ | \ 9 \ 3)$
- 2. The central part is copied into the offspring:

s1 = (x x x | 4567 | x x) s2 = (x x x | 1876 | x x)

3. Starting from the second point, copy the values of the other parent in the same order, omitting those repeated values.

 $s1 = (x \ x \ x \ | \ 4 \ 5 \ 6 \ 7 \ | \ 9 \ 3)$ $s2 = (x \ x \ x \ | \ 1 \ 8 \ 7 \ 6 \ | \ 9 \ 2)$

4. When the end of the string is reached, start from the first position on the left: $s1 = (2 \ 1 \ 8 \ | \ 4 \ 5 \ 6 \ 7 \ | \ 9 \ 3)$ $s2 = (3 \ 4 \ 5 \ | \ 1 \ 8 \ 7 \ 6 \ | \ 9 \ 2)$

METHOD 9: Swap

We select two positions on the chromosome at random, and interchange the values. (This is common in permutation-based encodings).

Sistemas Inteligentes Grado en Ingeniería Informática elisa.guerrero@uca.es Departamento Ingeniería Informática

1

EXERCISES

Use the following random numbers:

8	2	1	3	6	2	3	8	4	5	7	0.5129	0.3693	0.4460	0.3933	0.1194
6	1	3	8	Δ	7	3	6	4	Δ	2	0.9404	0.3204	0.4032	0.4605	0.0336
c	- -	2	1	-	, 1	г	6	1	-	0	0.5083	0.8044	0.6344	0.4156	0.6579
D	2	5	1	2	T	5	0	T	<u></u>	ð	0.8024	0.35	04 0.1922	0.5281	0.0111
1	8	7	7	4	6	2	4	2	7	2	0.8624	0.2720	0.0018	0.8621	0.0950
											0.4714	0.5729	0.2331	0.1582	0.9280
											0.6290	0.1438			

1. Given the following individuals belonging to the 4-Queens problem, where the fith column corresponds to the evaluation function, apply all the selection operators studied above:

2	1	3	4	4
1	3	2	4	4
3	4	1	2	2
3	2	4	1	5
4	2	3	1	4
2	3	4	1	2
4	3	1	2	4
1	4	2	3	5

 Apply the crossover methods according to the representation of the individuals. Crossover points are 3 and 7: A)

B) 0011100011 111010101

- 3. Apply mutation operators when possible, according to the representation. PMut=0.2
 - A) 00011100011 B) 6 10 7 8 5 1 2 4 9 3