GENETIC OPERATORS

In this exercise we study three genetic operators: Selection, Crossover and Mutation:

1. Read de basics of each operator
2. Classify each method into one of the 3 operators

SELECTION OPERATOR

Decide which individuals will breed a new generation.
■ The key idea is to give preference to better individuals, allowing them to pass on their genes to the next generation.

- The goodness of each individual depends on its fitness.
- Some individuals will be selected more than once, while others will die without leaving any descent.

CROSSOVER OPERATOR

- Two individuals are chosen from the population using the selection operator.
■ The two new offspring created from this mating are put into the next generation of the population.
- By recombining portions of good individuals, this process is likely to
 create even better individuals.

MUTATION OPERATOR

- Alter each gene independently with a probability p_{m}
- p_{m} is called the mutation rate

Typically between 1 /pop_size and 1 / chromosome_length

METHOD 1: Choose a random point on the two parents

- Split parents at this point
- Create children by exchanging tails
- $\quad \mathrm{P}_{\mathrm{c}}$ typically in range $(0.6,0.9)$

METHOD 2: Insertion

- Pick two allele values at random
- Place the first to follow the second, shifting the rest along to accommodate
- Note that this preserves most of the order and the adjacency information

$$
\mathrm{v}=(198765432) \quad \mathrm{v}^{\prime}=\left(\begin{array}{ll}
197658432
\end{array}\right)
$$

METHOD 3 - Roulette Wheel

- Assign to each individual a part of the roulette wheel, based on the evaluation function
- Spin the wheel n times to select n individuals

METHOD 4: Inversion

Invert the order of a sub-chain

$$
\mathrm{v}=(198|7654| 32) \quad v^{\prime}=(198|4567| 32)
$$

METHOD 5: Tournament

- Pick k members at random, then select the best of these
- Repeat to select more individuals

METHOD 6: Bit Flip (Binary)

We select one or more random bits and flip them (from 0 to 1 or viceversa)

METHOD 7: PMX

1. Two points are selected at random (or determined before execution)

$$
\mathrm{p}_{1}=(123|4567| 89) \quad \mathrm{p}_{2}=(452|1876| 93)
$$

2. The central part of one parent is mapped to the central area of the other parent:

$$
\begin{aligned}
& \mathbf{s}_{\mathbf{1}}=(\mathbf{x} \mathbf{x x}|1876| \mathbf{x x}) \\
& \mathbf{s}_{\mathbf{2}}=(\mathbf{x} \mathbf{x x}|4567| \mathbf{x x})
\end{aligned}
$$

taking into account the interchanges: $1 / 4,8 / 5,7 / 6$, y 6/7
2. Then, the values that are not in conflict (already inserted) are added to each offspring:
For example value 1 in p1 already exists in s1, then we look for the next value

$$
\begin{aligned}
& \mathbf{p}_{\mathbf{1}}=(\mathbf{1} 23|4567| \mathbf{8 9}) \mathbf{s 1}=(\mathbf{x} 23|1876| \mathbf{x} 9) \\
& \mathbf{p}_{2}=(\mathbf{4 5 2 | 1 8 7 6 | 9 3)} \mathbf{s 2}=(\mathbf{x} \times 2|4567| 93)
\end{aligned}
$$

3. Finally, the values in conflict must be replaced by the interchanges: $1 / 4,8 / 5$, 7/6, y 6/7
For example value 1 in pl already exists in sl, the interchange was $1 / 4$, thus, value 4 is added instead

$$
\begin{aligned}
& \mathbf{s 1}=(423|1876| 59) \\
& \mathbf{s} \mathbf{2}=(182|4567| 93)
\end{aligned}
$$

METHOD 8: OX

From a substring of p 1 , and preserving the relative order of the p 2 :

1. Two points are selected at random (or determined before execution)

$$
\mathrm{p}_{1}=(123|4567| 89) \quad \mathrm{p}_{2}=(452|1876| 93)
$$

2. The central part is copied into the offspring:

$$
\mathbf{s} 1=(\mathbf{x} \times \mathbf{x}|4567| \mathbf{x x}) \quad \mathbf{s} 2=(\mathbf{x} \times \mathbf{x}|1876| \mathbf{x})
$$

3. Starting from the second point, copy the values of the other parent in the same order, omitting those repeated values.

$$
\mathbf{s} 1=(\mathbf{x} \times \times|4567| 93) \quad \mathbf{s} 2=(\mathbf{x} \times \mathbf{x}|1876| 92)
$$

4. When the end of the string is reached, start from the first position on the left:

$$
\mathbf{s} \mathbf{1}=(218|4567| 93) \mathbf{s 2}=(345|1876| 92)
$$

METHOD 9: Swap

We select two positions on the chromosome at random, and interchange the values. (This is common in permutation-based encodings).

EXERCISES

Use the following random numbers:

8	2	1	3	6	2	3	8	4	5	7	0.5129	0.3693	0.4460	0.3933	0.1194
6	1	3	8	4	7	3	6	4	4	2	0.9404	0.3204	0.4032	0.4605	0.0336
6	5	3	1	5	1	5	6	1	5	8	0.5083	0.8044	0.6344	0.4156	0.6579
1	8	7	7	4	6	2	4	2	7	2	0.8024	0.8624	0.2720	0.0018	0.820
										0.4714	0.5729	0.2331	0.1521	0.0111	
										0.6290	0.1438			0.9280	

1. Given the following individuals belonging to the 4 -Queens problem, where the fith column corresponds to the evaluation function, apply all the selection operators studied above:

2	1	3	$\mathbf{4}$	$\mathbf{4}$
1	3	2	4	$\mathbf{4}$
3	4	1	2	$\mathbf{2}$
3	2	4	1	$\mathbf{5}$
4	2	3	1	$\mathbf{4}$
2	3	4	1	$\mathbf{2}$
4	3	1	2	$\mathbf{4}$
1	4	2	3	$\mathbf{5}$

2. Apply the crossover methods according to the representation of the individuals. Crossover points are 3 and 7 :
A)

6	3	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{2}$	4	9	10
2	10	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{7}$	6	3	4

B) $\quad 0011100011$

1111010101
3. Apply mutation operators when possible, according to the representation. PMut=0.2
A) 00011100011
B) $\quad \begin{array}{llllllllll}6 & 10 & 7 & 8 & 5 & 1 & 2 & 4 & 9 & 3\end{array}$

