PARTICLE SWARM OPTIMIZATION

1. Listen to the following video:

https://www.youtube.com/watch?v=UcNm1c8kggE :
2. Linking words:
Birds

- school
Bees •
- flock
Fish •
- colony
Ant •
- swarm

They do this because the group is \qquad when \qquad together

3. Listen to the following video:

https://www.youtube.com/watch?v=bVDX_UwthZI (from 19'08 to 25')

4. Complete the following sentences:

Instead of having just three points you have a whole bunch of points, the \qquad the \qquad , and each point is called a \qquad .

Each \qquad has a \qquad which is just a \qquad solution

It also has a \qquad , the \qquad is a value that
indicates where the particle will move to next.

Each particle has a measure of error at its current position and it also has memory of the best position it found and the associate error.

There's a global \qquad position found by any
particle and its associates

There's a \qquad loop and then you process each particle and at each
\qquad you calculate a new velocity and the new velocity will
determine where that point \qquad

The velocity has three components:

- \qquad : a particle that's moving tends to keep moving in the same
direction
- and also it has another component that tends to move towards the best position that \qquad
- The third component that moves it towards the best position found by any
\qquad in the \qquad

Every optimization method has parameters you have to \qquad

5. Looking for the hidden treasure ...

In a room of $M \times N$ cells there exists a particular position where the most delicious food is present, and we are going to find out using PSO.
You are a particle belonging to a population of 10 elements, and you are given an initial position and velocity, as well as, the three parameters:

$$
w=0.8: \text { inertia }
$$

$c p=0.7$: influence of the particular best position
$c g=0.8$: influence of the global best position
You must calculate your new position and velocity in each iteration, according to the following equations and keep the track of your particular best evaluation as well as the global best evaluation.
The modification of the particle's position can be mathematically modeled according to the following equation:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{i}}^{\mathrm{k}+1}=w V_{i}^{k}+c_{p} r_{p}\left(S_{p b e s t_{i}}-S_{i}^{k}\right)+c_{g} r_{g}\left(S_{g b e s t}-S_{i}^{k}\right) \\
& \mathrm{S}_{\mathrm{i}}^{\mathrm{k}+1}=S_{i}^{k}+V_{i}^{k+1}
\end{aligned}
$$

where,
V_{i}^{k} : velocity of agent i at iteration k, w : influence of the previous velocity,
c_{j} : influence of the global or local previous solution,
r_{j} : uniformly distributed random number between 0 and 1 ,
S_{i}^{k} : current position of agent i at iteration k,
pbest i_{i} : pbest of agent i ,
gbest: gbest of the group.

$\mathrm{k}=0$	$\mathrm{k}=1$	$\mathrm{k}=2$	k=3	$\mathrm{k}=4$	$\mathrm{k}=5$	$\mathrm{k}=6$
	$\begin{aligned} & \mathrm{r}_{\mathrm{p}}=0.6824 \\ & \mathrm{r}_{\mathrm{g}}=0.8041 \end{aligned}$	$\begin{aligned} & \mathrm{r}_{\mathrm{p}}=0.4306 \\ & \mathrm{r}_{\mathrm{g}}=0.8663 \end{aligned}$	$\begin{aligned} & \hline \mathrm{r}_{\mathrm{p}}=0.0218 \\ & \mathrm{r}_{\mathrm{g}}=0.9667 \end{aligned}$	$\begin{aligned} & \hline \mathrm{r}_{\mathrm{p}}=0.1656 \\ & \mathrm{r}_{\mathrm{g}}=0.0554 \end{aligned}$	$\begin{aligned} & \hline \mathrm{r}_{\mathrm{p}}=0.1340 \\ & \mathrm{r}_{\mathrm{g}}=0.6693 \end{aligned}$	$\begin{aligned} & \mathrm{r}_{\mathrm{p}}=0.0536 \\ & \mathrm{r}_{\mathrm{g}}=0.9297 \end{aligned}$
$\begin{aligned} & \mathrm{S}^{0}= \\ & \mathrm{V}^{0}=0 \end{aligned}$	$\begin{gathered} \mathrm{S}^{1}= \\ \mathrm{V}^{1}= \end{gathered}$	$\begin{gathered} \mathrm{S}^{2}= \\ \mathrm{V}^{2}= \end{gathered}$	$\begin{gathered} \mathrm{S}^{3}= \\ \mathrm{V}^{3}= \end{gathered}$	$\begin{aligned} & \mathrm{S}^{4}= \\ & \mathrm{V}^{4}= \end{aligned}$	$\begin{aligned} & \mathrm{S}^{5}= \\ & \mathrm{V}^{5}= \end{aligned}$	$\begin{aligned} & \mathrm{S}^{6}= \\ & \mathrm{V}^{6}= \end{aligned}$
$\begin{aligned} & p_{\text {best }}= \\ & g_{\text {best }}= \end{aligned}$	$\begin{aligned} & \mathrm{p}_{\text {best }}= \\ & \mathrm{g}_{\text {best }}= \end{aligned}$	$\begin{aligned} & \mathrm{p}_{\text {best }}= \\ & \mathrm{g}_{\text {best }}= \end{aligned}$	$\begin{aligned} & \mathrm{p}_{\text {best }}= \\ & \mathrm{g}_{\text {best }}= \end{aligned}$	$\begin{aligned} & \mathrm{p}_{\text {best }}= \\ & \mathrm{g}_{\text {best }}= \end{aligned}$	$\begin{aligned} & \mathrm{p}_{\text {best }}= \\ & \mathrm{g}_{\text {best }}= \end{aligned}$	$\begin{aligned} & \mathrm{p}_{\text {best }}= \\ & \mathrm{g}_{\text {best }}= \end{aligned}$

6. Implement a PSO strategy based on exercise 1 .

- Evaluation function: the particles can smell the food, the closer the food the stronger the smell ... (To simulate this smell evaluation function let's assume that the treasure is hidden at position (x, y))

Decimal Numbers

https://www.englishclub.com/vocabulary/numbers-decimal.htm

We can describe numbers smaller than one by using fractions or decimals. Today, the decimal system is more common than fractions.
To indicate a decimal number we use a point (.) and this includes money such as dollars and cents.

Look at these decimal examples:

We write:	We say:
$\mathbf{0 . 3}$	nought point three zero point three
$\mathbf{3 . 4 5}$	three point four five (NOT three point forty-five)
$\mathbf{9 8 . 4}$	ninety-eight point four
$\$ 1.55$	one dollar, fifty-five cents one dollar, fifty-five
$\mathbf{\$ 7 0 0 . 0 0}$	seven hundred dollars
$\mathbf{€ 3 , 5 0 0 . 5 0}$	three thousand five hundred euro and fifty cents three thousand five hundred euro, fifty cents

Remember that we use commas to separate thousands. Be careful with commas and points. Some languages use them in the opposite way!

