
Constraint Satisfaction Problems 1

Unit 1
Constraint Satisfaction Problems

Dra.	Elisa	Guerrero		Vázquez
elisa.guerrero@uca.es

University of	Cadiz - Spain

Constraint Satisfaction Problems 2

Contents

1. Introduction	to	Constraint	Satisfaction	Problems
2. CSP	Formulation
3. CSP	Solving

1. Search	Strategies
2. Backtracking	for	CSP	
3. General	purpose	heuristics

4. AC3
5. Local	Search

Constraint Satisfaction Problems 3

Constraint	 Satisfaction	Problem	(CSP)
the	solution	is	a	correct	assignment	of	values	to	each	variable	according	to	a	set	of	

constraints	that	must	be	satisfied

Introduction	

1.1	CSP	definition

Constraint Satisfaction Problems 4

n N-Queens
n Map Coulouring
n Cryptography
n Sudoku

Introduction	

1.2	Toy Problems

T W O

+
T W O

F O U R

Constraint Satisfaction Problems 5

Introduction	

1.2	Real	World CSP	Problems

Shortest	path	between	several	points

Optimal	routing	of	data	in	Internet

Minimal	cost	planning	for	product		shipping

Optimal	sequencing	 in	process	
manufacturing	
Task	scheduling

Optimal	aircrew	selection

https://www.youtube.com/watch?v=y4RAYQj
Kb5Y

Constraint Satisfaction Problems 6

Set of	Variables	X1…Xn
• whose values belong to	a	domain Di

Set of	Constraints C1…Cm
• the set of	allowed values
• rules	or properties that each variable	must satisfied

State
• assignment of	values to	variables

Solution
• complete	assignment	 that	satisfies	all	the	constraints

2		CSP	formulation

Constraint Satisfaction Problems 7

Formulation

2.1	Assignments

Solution

Consistent
an	assignment	that	does	not	

violate	any	constraints	

Complete	
every	variable	is	mentioned	
in	the	assignment	and	all	the	
constraints	are	satisfied

Constraint Satisfaction Problems 8

Domain

Discrete

Continuous

Constraints

Hard
(Obligation)

Soft
(Preference)

Number	of	
variables	(in	the	
constraints)

Binary

Multiple

Formulation

2.2	CSP	classification

Constraint Satisfaction Problems 9

Formulation

2.2	CSP	formulation example:	Graph-colouring

GOAL:		Assign	different	colours	to	adjacent	regions
n Variables:		R1 ..	R7 each	region
n Domain:	set	of	colours	{red,	green,	blue}
n Constraints:

n Two	adjacent	regions	must	have	different	colours
§ Ri ≠ Rj If	Ri and	Rj are	adjacent

n State:	variables	with	some	assigned	value	{R1=red,	R2=,	R3=,	R4=,	R5=,	R6=,	R7=}
n Solution:	Consistent	 and	complete	 assignment

{R1=red,	R2=green,	R3=red,	R4=blue,	
R5=green,	R6=red,	R7=green}

Constraint Satisfaction Problems 10

Formulation

2.2	CSP	formulation example:	Graph-colouring

GOAL:	assign different colours to adjacent regions
n Variables:		R1 ..	R7 each region
n Domain:	set	of	colours {red,	green,	blue}
n Constraints:

n Two adjacent regions must have different colours
§ Ri ≠ Rj If Ri and	Rj are	adjacent

n State:		variables	with	some	assigned	value	{R1=red,	R2=,	R3=,	R4=,	R5=,	R6=,	R7=}
n Solution:	Consistent and	complete	 assigment

{R1=red,	R2=green,	R3=red,	R4=blue,	
R5=green,	R6=red,	R7=green}

Discrete Domain

Binary Constraints

Hard Constraints

Constraint Satisfaction Problems 11

Formulation

2.2		CSP	formulation example:	N-Queens

GOAL:	Place	N	queens	on	an	NxN chess	board	so	that	no	queen	can	attack	any	other	queen	
n Variables: Q1,	Q2,	..	QN representing each queen position	 (Queen	1	is always in	column 1,	

Queen	2	in	column 2,	…)

n Domain: row numbers {1,	2,	..	N}
n Constraints:

n Different Row:	Qi ≠ Qj

n Different Diagonal:	|Qi – Qj |≠ |i	- j|
n State:		Any assignment
n Solution for N=4:	{3,	1,	4,	2}	that is

Q1=3	Q2=1	Q3=4	Q4=2	

Constraint Satisfaction Problems 12

Formulation

2.2		CSP	formulation example:	N-Queens

GOAL:	Place	N	queens	on	an	NxN chess	board	so	that	no	queen	can	attack	any	other	queen	
n Variables: Q1,	Q2,	..	QN representing each queen position	 (Queen	1	is always in	column 1,	

Queen	2	in	column 2,	…)

n Domain: row numbers {1,	2,	..	N}
n Constraints:

n Different Row:	Qi ≠ Qj

n Different Diagonal:	|Qi – Qj |≠ |i	- j|
n State:		Any assignment
n Solution for N=4:	Q1=3	Q2=1	Q3=4	Q4=2	

Discrete Domain

Binary Constraints

Hard Constraints

Constraint Satisfaction Problems 13

Formulation

2.2		CSP	formulation example:	Criptarithmetic

GOAL:	assign different digits to	the letters
n Variables:		each letter is a	different variable,	and	two more	variables	are	needed:	

{T,	W,	O,	F,	U,	R,	X1,	X2}
n Domain for the letters:	 values from 0	to	9,	for the carrying variables,	values from 0	to	1
n Constraints:

n Sum1:	O+O=R	+	10* X1
n Sum2:	X1 +	W	+	W	=	U	+	10	*	X2
n Sum3:	X2 +	T	+	T	=	O	+	10*F

n State:	assignments
n Solution:	F=1,	R=2,W=3,	O=6,	U=7,	T=8

X2 X1
T W O

+
T W O

F O U R

0 1
8 3 6

+
8 3 6

1 6 7 2

0 0
7 3 4

+
7 3 4

1 4 6 8

Constraint Satisfaction Problems 14

Formulation

2.2		CSP	formulation example:	Criptarithmetic

GOAL:	assign different digits to	the letters
n Variables:		each letter is a	different variable,	and	two more	variables	are	needed:	

{T,	W,	O,	F,	U,	R,	X1,	X2}
n Domain for the letters:	 values from 0	to	9,	for the carrying variables,	values from 0	to	1
n Constraints:

n Sum1:	O+O=R	+	10* X1
n Sum2:	X1 +	W	+	W	=	U	+	10	*	X2
n Sum3:	X2 +	T	+	T	=	O	+	10*F

n State:	assignments
n Solution:	F=1,	R=2,W=3,	O=6,	U=7,	T=8

X2 X1
T W O

+
T W O

F O U R

0 1
8 3 6

+
8 3 6

1 6 7 2

Discrete Domain

Multiple Constraints

Hard Constraints

Constraint Satisfaction Problems 16

Formulation

2.3	CSP	Representation

n Binary constraint graph:
n Nodes or Vertices : Variables
n Arcs or edges: Binary relations between variables

X1

X2

X3
X5

X4

Constraint Satisfaction Problems 17

Formulation

2.3	CSP	Representation

n Binary constraint graph:

WA

NT

V

NSW

Q

SA

T

Constraint Satisfaction Problems 18

Formulation

2.3	N-Queens	Example

R1 R2

R3 R4

Constraint Satisfaction Problems 19

3.	CSP	solving

n Search strategies
Systematic search: Exploration of the state space

n Consistency approaches
Inconsistent values are removed from variables domains
Help to	reduce	the state space

Constraint Satisfaction Problems 20

CSP	solving

3.1	Search Strategies

n Goal	Test
n Path	or	Solution	
n Solution	Cost

AA

B

D FE

BB

DD FFEE

CC

Initial	State

Rules	+	Operators

State Space

Constraint Satisfaction Problems 21

CSP	solving

3.1	Example

n Graph	colouring	problem

Red

Green

Blue

Constraint Satisfaction Problems 22

CSP	solving

3.1	CSP	as	State Space Search

Incremental	formulation	as	a	standard	search	problem:
n Initial	State:	empty	assignment	{R1=,	R2=,	R3=,	R4=,	etc.}

{						,						,					,					}

n List	of	Actions:	Assign	a	color to	a	variable:	Red,	Green	or	Blue
n Successor	Function:	assignment	of	a	value	v to	an	unassigned	variable	when	this	action	
does	not	conflict	with	previous	assignments	

n isSafe function	to	guarantee	consistent	assignments

{Red			,													,													,								}
{	Red		,	Green,														,								}

n Goal	Test:	the	current	assignment	 is	complete

Constraint Satisfaction Problems 23

CSP	solving

3.1	CSP	as	state space search

Incremental	 formulation	as	a	standard	search	problem:

Constraint Satisfaction Problems 24

CSP	solving

3.1	CSP	as	state space search

Incremental	 formulation	as	a	standard	search	problem:

R1=Red R1=Green R1=Blue

Constraint Satisfaction Problems 25

CSP	solving

3.1	CSP	as	state space search

Incremental	 formulation	as	a	standard	search	problem:

R1=Red R1=Green R1=Blue

R2=Green R2=Blue

¿Depth	or	Breadth	Search?

Constraint Satisfaction Problems 26

CSP	solving

3.1	Some considerations

n FINITE	DEPTH:	the	number	of	variables	determines	 the	solution	depth
n CONMUTATIVITY:		assignment	 order	is	irrelevant

n Depth-first	search	for	CSPs	with	single-variable	assignments	 is	called	backtracking	
search	

n CONTROL	OF	REPEATED	STATES	is	unnecessary

Constraint Satisfaction Problems 27

CSP	solving

3.2	Backtracking

Special depth search …

n Consider	the	variables	in	some	order	
n Pick	an	unassigned	variable	and	give	it	a	provisional	value	such	that	 it	is	consistent	with	

all	of	the	constraints	
n If	no	such	assignment	 can	be	made,	we’ve	reached	a	dead	end	and	we	need	to	

backtrack	to	the	previous	variable
n Continue	this	process	until	a	solution	is	found	or	all	possible	assignments	 have	been	

exhausted	

Constraint Satisfaction Problems 28

CSP	solving

3.2	Backtracking

Constraint Satisfaction Problems 29

CSP	solving

3.2	Backtracking

R1=Red

Constraint Satisfaction Problems 30

CSP	solving

3.2	Backtracking

R1=Red

R2=Green

Constraint Satisfaction Problems 31

CSP	solving

3.2	Bactracking

R1=Red

R2=Green

R3=Blue

Etc.

Constraint Satisfaction Problems 36

CSP	solving

Drawbacksof	Backtracking

Simple	to	implement
Intuitive	approach	of	
trial	and	error
Code	size	is	usually	
small

Multiple	 function	
calls	are	expensive
Inefficient
• there	is	lots	of	branching	
from	one	state

• explore	areas	of	the	
search	space	that	aren’t	
likely	to	succeed

Ad
va
nt
ag
es

Disadvantages

Constraint Satisfaction Problems 37

CSP	solving

3.2	BacktrackingAlgorithm

function [solution,	domains]	=	backtracking(solution,	domains)
variable	=	SELECT-UNASSIGNED-VARIABLE(solution,	domains);
if Not empty(variable)

valuesList ç ORDER-DOMAIN-VALUES(variable,	domains);
nValues ç length(valuesList);
while Not Complete(solution)	ANDNot empty(values_list)

valueçnext(values_list)
if Consistent(solution,	variable,	value)

[solution,	domains]	ç AssignValue(solution,	domains,	variable,	value);
[solution,	domains]	çbacktracking(solution,	domains);
if Not Complete(solution)

[solution,	domains]çUndo(solution,	domains,	variable,	value);
																 end	
												 end	

end	
				end	
end %bactracking

Constraint Satisfaction Problems 38

CSP	solving

3.3	General	purpose	heuristics

Variable	selection Values Selection

R1
R2
R3

Degree	
Heuristic	 	:	
most	constraint	
variable		

Minimum
Remaining
Values

Least-Constraining-Value

Information propagation
through constraints Backtracking

Intelligent
backtrack in	case	of	

failure

Fordward
Checking

Arc-Consistency
AC3

Constraint Satisfaction Problems 39

CSP	solving

Variable	Selection:	Example of	Degree	Heuristic

Wich variable would go first?

Number of Constraints:
WA=2
NT=3
Q=3

SA=5
NSW=3

V=2
T=0

WA

NT

V

NSW

Q

SA

T

Constraint Satisfaction Problems 40

CSP	solving

Variable	Selection:	Example of	Degree	Heuristic

SA=red

Degree
Heuristic

selects SA

Number of Constraints:
WA=2
NT=3
Q=3

SA=5
NSW=3

V=2
T=0

WA

NT

V

NSW

Q

SA

T

Constraint Satisfaction Problems 41

CSP	solving

Variable	Selection:	Example of	MRV

WA=red

WA=red
NT=green

Which variable
would go next?

Possible values:

SA={blue}
Q={red, blue}

NSW={red,green, blue)
V={red,green, blue)
T={red,green, blue)

WA

NT

V

NSW

Q

SA

T

Constraint Satisfaction Problems 42

CSP	solving

Variable	Selection:	Example of	MRV

WA=red

WA=red
NT=green

WA=red
NT=green
SA=blue

MRV selects
SA

Which variable
would go next?

Possible values:
SA={blue}

Q={red, blue}

WA

NT

V

NSW

Q

SA

T

Constraint Satisfaction Problems 43

CSP	solving

A.	Variable	selection

varçSELECT-UNASSIGNED-VARIABLE(solution, domains)

Variable	Selection

Selects the variable	with less legal	values
• To	increase the probability of	pruning

selects the variable	that is involved in	the largest
number of	constraints of	other unassigned variables	
• useful as	a	tie-breaker or at	the beginning of	the

search process
Degree Heuristic:

Minimum Remaining
Values (MRV):			

Constraint Satisfaction Problems 44

CSP	solving

Order of	Values:	Example of	LCV	

WA=red

WA=red
NT=green

WA=red
NT=green
Q= ?

WA

NT

V

NSW

Q

SA

T

Possible values:

SA={blue}
Q={red, blue}

NSW={red,green, blue)
V={red,green, blue)
T={red,green, blue)

Which value of Q
should I select?

Assuming that Q is the next variable …

Constraint Satisfaction Problems 45

CSP	solving

Order of	Values:	Example of	LCV	

WA=red

WA=red
NT=green

WA=red
NT=green
Q= red

red appears
less times than
blue

Which value of Q
should I select?

Possible values:

SA={blue}
Q={red, blue}

NSW={red,green, blue)
V={red,green, blue)
T={red,green, blue)

Assuming that Q is the next variable …

WA

NT

V

NSW

Q

SA

T

Constraint Satisfaction Problems 46

Selects the value that appears in	fewer constraints
e.g.,	the most free	value

• Tries	to	leave as	many options for therestof	the
variables	to	be	assigned

CSP	solving

B.	Order of	Values

values_listçORDER-DOMAIN-VALUES(solution, domains)

Once	a	variable	has	been selected,	the algorithm must decide	
the order in	which it will examine	 its values.

Least-
Constraining-Value

(LCV)

Order of	values

Constraint Satisfaction Problems 47

CSP	solving

3.2	BacktrackingAlgorithm

function [solution,	domains]	=	backtracking(solution,	domains)
variable	=	SELECT-UNASSIGNED-VARIABLE(solution,	domains);
if Not empty(variable)

valuesList ç ORDER-DOMAIN-VALUES(variable,	domains);
nValues ç length(valuesList);
while Not Complete(solution)	ANDNot empty(values_list)

valueçnext(values_list)
if Consistent(solution,	variable,	value)

[solution,	domains]	ç AssignValue(solution,	domains,	variable,	value);
[solution,	domains]	çbacktracking(solution,	domains);
if Not Complete(solution)

[solution,	domains]çUndo(solution,	domains,	variable,	value);
																 end	
												 end	

end	
				end	
end %bactracking

Constraint Satisfaction Problems 48

CSP	solving

C.	Propagating information through constraints

n When X	is assigned a	value …
FC	looks	at	each unassigned variable	Y	that is connected to	X	by a	constraint and	deletes
from Y	’s	domain any value that is inconsistent with the value chosen for X	
n Each node in	the search tree must contain the state and	the list of	possible values
n MRV	is an obvious partner of	FC

R1
R2
R3

Fordward
Checking

Constraint Satisfaction Problems 49

CSP	solving

Example of	FC

n Initially

n WA=red

Red	value	is	removed	 from	NT	and	SA	domains

WA NT Q NSW V SA T

WA NT Q NSW V SA T

WA

NT

V

NSW

Q

SA

T

Constraint Satisfaction Problems 50

CSP	solving

Example of	FC

n WA=red Q=green

WA NT Q NSW V SA T

WA

NT

V

NSW

Q

SA

T

Constraint Satisfaction Problems 51

CSP	solving

Example of	FC

n WA=red Q=green

n WA=red Q=green	 	V=blue

WA NT Q NSW V SA T

WA NT Q NSW V SA T SA domain is
empty !!

WA

NT

V

NSW

Q

SA

T

Constraint Satisfaction Problems 52

CSP	solving

Example of	FC

n LIMITATION:	Although	forward	checking	detects	many	inconsistencies,	 it	does	not	detect	
all	of	them

n NT	and	SA	were	both	blue !!

WA NT Q NSW V SA T

WA

NT

V

NSW

Q

SA

T

Constraint Satisfaction Problems 54

CSP	solving

Forward	checking algorithm

n Forward	checking can	be	seen as	the application of	a	simple	step of	arc-consistency
between the variable	that has	been assigned a	value and	each of	the variables	that
remain to	be	instantiated:
1. Select xi.
2. Assign xi	← aj :	aj∈ Di.	
3. REPEAT:

1. forward-check:	
Remove from the domains of	the variables	(xi+1.. xn),	those values that are	inconsistent with
respect to	the assignment (xi,	aj),	according to	the set	of	constraints.
Increment i

4. UNTIL	i>n
5. If there exists a	unassigned variable,	and	its domain is empty then retract assignment xi	← aj.	Do:

§ Try	with other values of	Di,	go to	step(2).
§If Di	is empty:

§ If i	>	1,	decrement i	(try	with previous variable)	and	go back	to	step (2).
§ If i	=	1,	exit (No	Solution).

Constraint Satisfaction Problems 57

ALTERNATIVE:	
Arc-consistent VARIABLES

Forward	Checking
Propagation of	constraints

NO	COMPLETE Speed is required to	be	
efficient

CSP	solving

Limitations of	Forward	Checking

R1
R2
R3

Constraint Satisfaction Problems 58

n Arc-Consistent:	when for each pair of	variables	(X,	Y)	and	for
each value xi of	Dx there exists a	value yj of	Dy such as	
Constraints	are	satisfied

Ø Current domains must be	consistent with all the constraints

4.	Constraint	Propagation

R1
R2
R3

arc-consistencyAC3

Constraint Satisfaction Problems 59

Constraint	Propagation

4.1	Arc-consistency

D1={1..10}
D2={5..15}
D3={8..15}
Constraints:

n X1>X2
n X2>X3

X1
X2

X3

Constraint Satisfaction Problems 60

Constraint	Propagation

4.1	Arc-consistency

D1={1..10}
D2={5..15}
D3={8..15}

Constraint1:		X1>X2
Constraint2:		X2>X3
Before any assignment:
1. In	order to	satisfy Constraint1	and	make Arc(1,2)	a	consistent arc,	

n D1	=	{6..10}	and	D2	=	{5..9}
2. To	make Arc(2,3)	consistent

n D2={9}	and	D3={8}
3. Next iteration,	

n D1={10},	D2={9}	and	D3={8}
4. Each domain is now unique,	solution has	been reached

X1
X2

X3

Constraint Satisfaction Problems 62

Constraint	Propagation

4.1	ARC-CONSISTENCY

(X	Y)	Is	consistent	if	and	only	if:
n For	each	 value	xi	 of	X	there	exists	some	allowed	value	yj

n WA=red Q=green

WA NT Q NSW V SA T

WA NT Q NSW V SA T

WA

NT

V

NSW

Q

SA

T

Constraint Satisfaction Problems 63

Procedure (intuitive idea):
From initial domains:
n Update domain in	each step
n Return a	set	of	updated domains where all arcs are	consistent

Domains update:
n If an arc is inconsistent,	 try	to	remove from the distinguished variable	those values
that do	not satisfy any constraint

Stop	criteria
n All arcs are	consistent
n Inconsistency:	A	domain is empty

Constraint	Propagation

4.2	AC3	Algorithm
R1

R2
R3

Constraint Satisfaction Problems 64

Constraint	Propagation

4.2	AC3	Algorithm

function REMOVE-INCONSISTENT-VALUES(Xi, Xj) returns true iff we remove a value
removed ← false
for each x in DOMAIN[Xi] do
if no value y in DOMAIN[Xj] allows (x,y) to satisfy the constraint between Xi and Xj

then delete x from DOMAIN[Xi];
removed ← true

return removed

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}
local variables: queue, a queue of arcs,
initially all the arcs in csp
while queue is not empty do
(Xi, Xj)←REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then
for each Xk in NEIGHBORS[Xi] do add (Xk, Xi) to queue

Constraint Satisfaction Problems 65

n From	the	application	of	AC3	we	can	end	with:
n An empty domain:	no	solution
n Unique domain:	a	unique solution
n At	least a	domain is not unique:	more	than one solution might exist

n AC3	can	be	used in	combination with any other search strategy:
n Backtracking and	backjumping
n Local	search and	heuristcs of	minimum conflicts

Constraint	Propagation

4.2	AC3	Algorithm

Constraint Satisfaction Problems 66

5.	Local	or Hill	Climbing Search

n Loop	that	continuously	moves	forward:
n Increasing	values	(if	the	goal	is	to	maximize	the	evaluation	function)	
n Decreasing	values	(if	the	goal	is	to	minimize	the	evaluation	function)

Constraint Satisfaction Problems 67

Local	Search	

5.1	Local	Search

For	combinatorial	optimization	problems
1. Start	with	initial	configuration
2. Repeatedly	 search	neighborhood	 (Successors)	and	select	the	best	

neighbor	as	candidate
3. Apply	a	cost	function	(or	fitness	function)	and	accept	candidate	

if	it	is	better	than	current
4. Stop	if	quality	is	sufficiently	high,	if	no	improvement	 can	be	

found	or	after	some	fixed	time

Ø Candidate	 is	always	and	only	accepted	if	cost	is	lower	
than	current	configuration

Ø Stop	when	no	neighbor	with	lower	cost	(higher	
fitness)	can	be	found

Constraint Satisfaction Problems 68

Local	Search	

5.1	Local	or Hill-climbing Search

Successors(current)
• m=statewith
min(feval(Successors))

IF	feval(m)	<	feval(current)
• current=m

Continue the trace	
through states that
decrease the
evaluation function It ends when a	

peak is reached:
where none
neighbor has	a	
lower value of	feval

neighbor = successor of actual with min(feval)
if feval(neighbor) < feval(current)

current = neighbor

Constraint Satisfaction Problems 69

Local	Search	

5.2	Problemswith Local	Search

Global optima

Local optima

It can get stuck in local optima
…

Shoulder

Flat

Constraint Satisfaction Problems 71

Local	Search	

5.3	Implementation

1. A	method	to	generate	 initial	 configuration
2. A	Successor	function	to	generate	 	new	states
3. A	Cost	function
4. A	Decision	Criterion	to	select	 next	candidates	from	the	list	of	successors
5. A	Stop	Criterion

Constraint Satisfaction Problems 72

Local	Search	

5.3	Alternative:	BeamLocal	Search

n Begin	with k random generated states
n Loop until the solution state is found

n Generate the list of	all the successors of	the k States.
n Select the k	best states from this list

Constraint Satisfaction Problems 73

Local	Search	

5.4	Local	Search for CSP

n States:They use	a	complete-state formulation (consistent or inconsistent)
n Initial State:	random generated
n Final	State:	Solution to	CSP
n Successors:	usually worksby changing the value of	one variable	at	a	time

Constraint Satisfaction Problems 74

Local	Search	

Minimum	Conflict	Heuristics

n Select	variable	other	than	the	 last	modified	one	that	participates	 in	more	unsatisfied	
constraints	 in	the	state

n Select	value	that	causes	the	least	number	of	conflicts	with	other	variables	(Least	
Restricted	 Value)

Constraint Satisfaction Problems 75

Local	Search	

5.5	Local	SearchMain Features

When	the	path	to	the	Solution	is	irrelevant:
n They	keep	only	one	State	in	memory:	the	current	State
n They	move	only	to	the	neighbouring	nodes	of	the	current	node
n They	are	not	systematic	 in	the	search
n They	use	little	memory
n They	can	find	reasonable	solutions	 in	large	or	infinite	spaces	of	States
n They	can	get	stuck	in	local	maxima/minima

Constraint Satisfaction Problems 76

References

n Russell,	S.	y	Norvig,	P.	Artificial	Intelligence (a	modern approach).	Ch.	5:	“Constraint	
Satisfaction	Problems”

n Schalkoff,	R.J.	Intelligent Systems:	Principles,	Paradigms and	Pragmatics.	Ch.	4
n Poole,	D.;	Mackworth,	A.	y	Goebel,	R.	Computational	Intelligence	(A	Logical	Approach)	

(Oxford	University	Press,	1998)	“Constraint Satisfaction Problems”

