

Intelligent Systems

Unit 1 Constraint Satisfaction Problems

Dra. Elisa Guerrero Vázquez elisa.guerrero@uca.es University of Cadiz - Spain

Contents

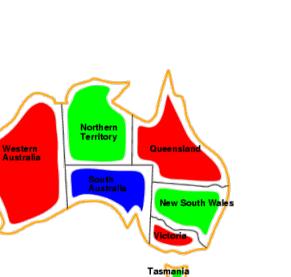
- 1. Introduction to Constraint Satisfaction Problems
- 2. CSP Formulation
- 3. CSP Solving
 - 1. Search Strategies
 - 2. Backtracking for CSP
 - 3. General purpose heuristics
- 4. AC3
- 5. Local Search

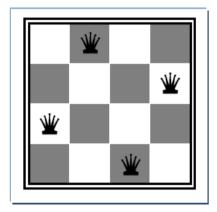
Constraint Satisfaction Problem (CSP)

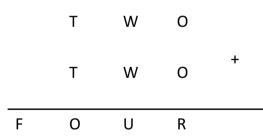
the solution is a correct assignment of values to each variable according to a set of constraints that must be satisfied

Constraint Satisfaction Problems 4

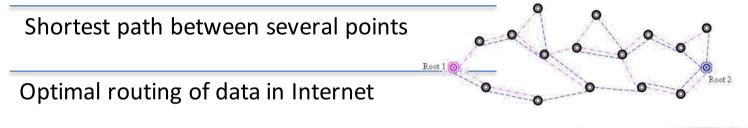
- N-Queens
- Map Coulouring
- Cryptography
- Sudoku







Introduction **1.2 Real World CSP Problems**



Minimal cost planning for product shipping

Optimal sequencing in process manufacturing

Task scheduling

Optimal aircrew selection

https://www.youtube.com/watch?v=y4RAYQj Kb5Y

2 CSP formulation

Set of Variables X₁...X_n

• whose values belong to a domain D_i

Set of Constraints C₁...C_m

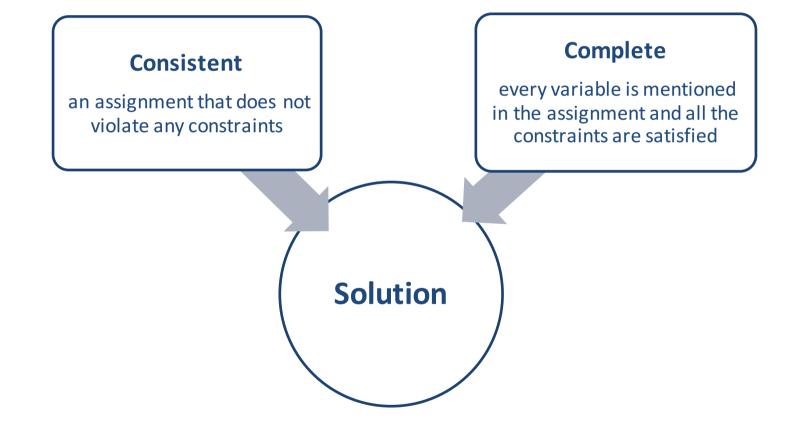
- the set of allowed values
- rules or properties that each variable must satisfied

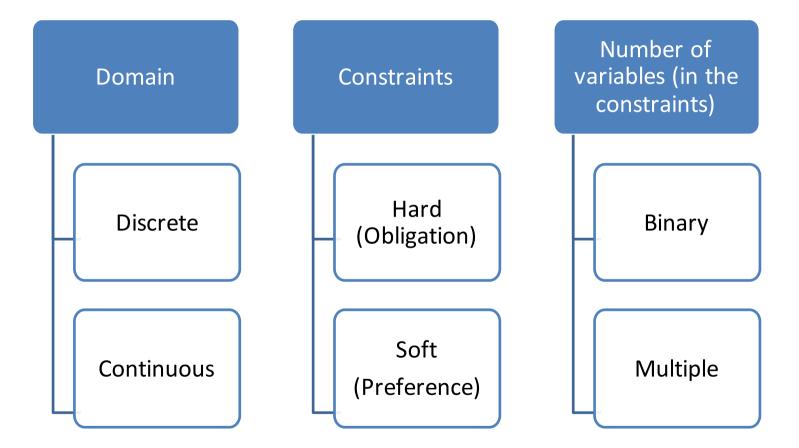
State

assignment of values to variables

Solution

• complete assignment that satisfies all the constraints





2.2 CSP formulation example: Graph-colouring

GOAL: Assign different colours to adjacent regions

- Variables: R₁.. R₇ each region
- **Domain**: set of colours {red, green, blue}
- **Constraints**:
 - Two adjacent regions must have different colours
 - $R_i \neq R_j$ If R_i and R_j are adjacent
- **State:** variables with some assigned value $\{R_1 = red, R_2 =, R_3 =, R_4 =, R_5 =, R_6 =, R_7 =\}$

Solution: Consistent and complete assignment

```
{R<sub>1</sub>=red, R<sub>2</sub>=green, R<sub>3</sub>=red, R<sub>4</sub>=blue,
R<sub>5</sub>=green, R<sub>6</sub>=red, R<sub>7</sub>=green}
```


2.2 CSP formulation example: Graph-colouring

GOAL: assign different colours to adjacent regions

- Variables: R₁.. R₇ each region
- **Domain**: set of colours {red, green, blue}
- **Constraints**:
 - Two adjacent regions must have different colo Discrete Domain
 - $R_i \neq R_j$ If R_i and R_j are adjacent
- State: variables with some assigned value {R₁=red Hard Constraints

Solution: Consistent and complete assigment

{R₁=red, R₂=green, R₃=red, **Binary Constraints**

 R_5 =green, R_6 =

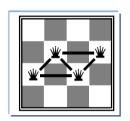


Example: Pormulation **2.2 CSP formulation example: N-Queens**

GOAL: Place N queens on an NxN chess board so that no queen can attack any other queen

- Variables: Q₁, Q₂, ... Q_N representing each queen position (Queen 1 is always in column 1, Queen 2 in column 2, ...)
- **Domain:** row numbers {1, 2, .. N}
- **Constraints**:
 - Different Row: $Q_i \neq Q_i$
 - Different Diagonal: $|Q_i Q_j| \neq |i j|$
- **State**: Any assignment
- **Solution for N=4**: {3, 1, 4, 2} that is

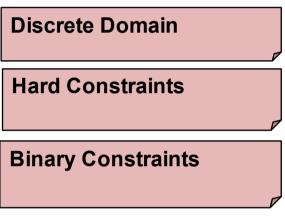
$$Q_1 = 3 Q_2 = 1 Q_3 = 4 Q_4 = 2$$

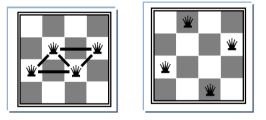


Formulation 2.2 CSP formulation example: N-Queens

GOAL: Place N queens on an NxN chess board so that no queen can attack any other queen

- Variables: Q₁, Q₂, ... Q_N representing each queen position (Queen 1 is always in column 1, Queen 2 in column 2, ...)
- Domain: row numbers {1, 2, .. N}
- **Constraints**:
 - Different Row: $Q_i \neq Q_i$
 - Different Diagonal: $|Q_i Q_j| \neq |i j|$
- **State**: Any assignment
- Solution for N=4: Q₁=3 Q₂=1 Q₃=4 Q₄=2





2.2 CSP formulation example: Criptarithmetic

GOAL: assign different digits to the letters

Variables: each letter is a different variable, and two more variables are needed:

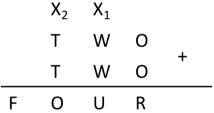
{T, W, O, F, U, R, X₁, X₂}

- **Domain** for the letters: values from 0 to 9, for the carrying variables, values from 0 to 1
- **Constraints**:

Formulation

- Sum1: O+O=R + 10* X₁
- Sum2: X₁ + W + W = U + 10 * X₂
- Sum3: X₂ + T + T = O + 10*F
- **State:** assignments
- **Solution:** F=1, R=2,W=3, O=6, U=7, T=8

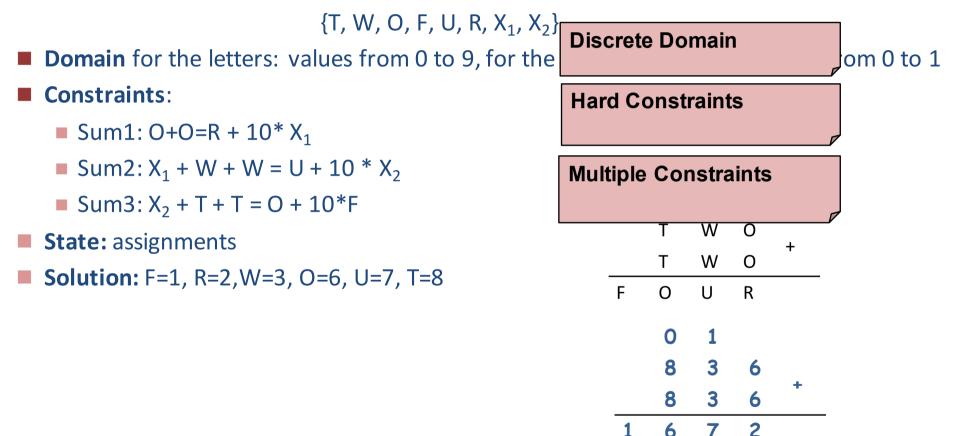
	0	1					0	0		
	8	3	6					3		+
	8	3	6	+			7	3	4	•
1	6	7	2		-	1	4	6	8	



2.2 CSP formulation example: Criptarithmetic

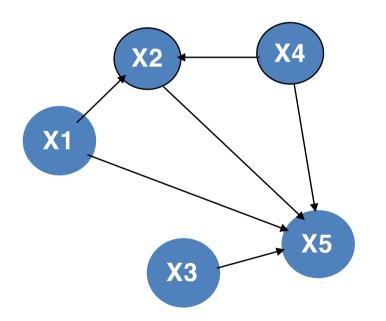
GOAL: assign different digits to the letters

Variables: each letter is a different variable, and two more variables are needed:

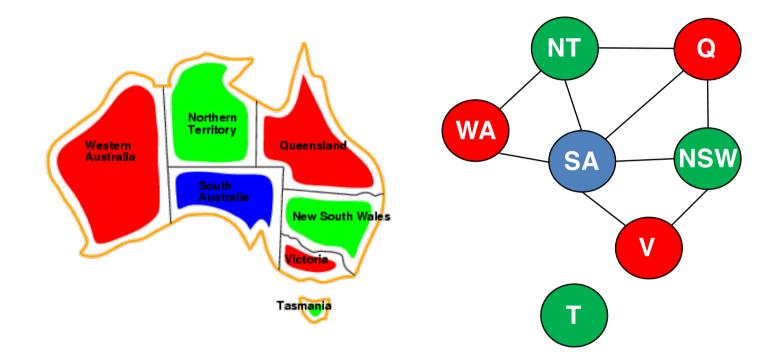


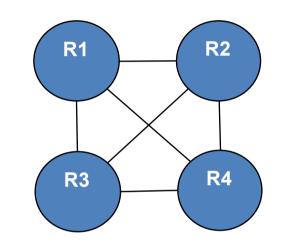
Eormulation **2.3 CSP Representation**

- Binary constraint graph:
 - Nodes or Vertices : Variables
 - Arcs or edges: Binary relations between variables



Binary constraint graph:





3. CSP solving

Search strategies

Systematic search: Exploration of the state space

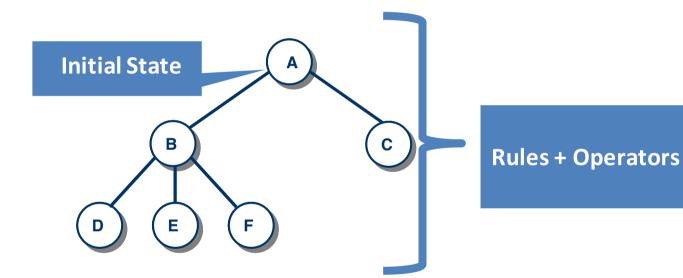
Consistency approaches

Inconsistent values are removed from variables domains Help to reduce the state space

CSP solving **3.1 Search Strategies**

- Goal Test
- Path or Solution
- Solution Cost

State Space



Graph colouring problem

CSP solving 3.1 CSP as State Space Search

Incremental formulation as a standard search problem:

■ Initial State: empty assignment {R₁=, R₂=, R₃=, R₄=, etc.}

{ , , , }

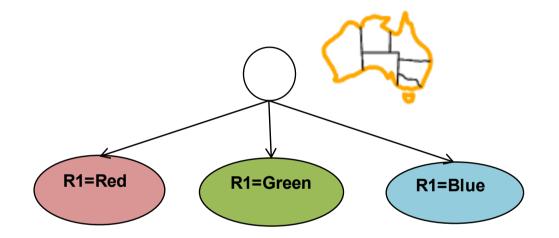
- List of Actions: Assign a color to a variable: Red, Green or Blue
- Successor Function: assignment of a value v to an unassigned variable when this action does not conflict with previous assignments
 - isSafe function to guarantee consistent assignments

{Red	,	,	,	}
{ Red	, Gree	en,	,	}

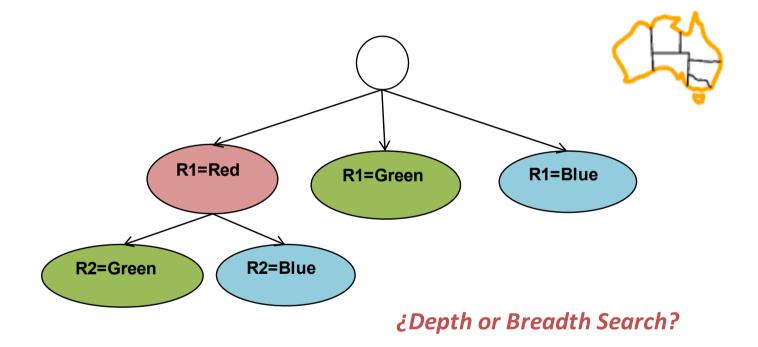
Goal Test: the current assignment is complete

Incremental formulation as a standard search problem:

Incremental formulation as a standard search problem:



Incremental formulation as a standard search problem:



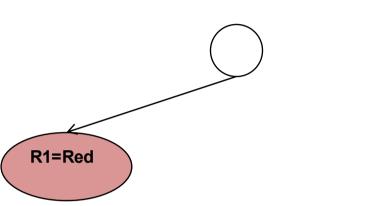
CSP solving **3.1 Some considerations**

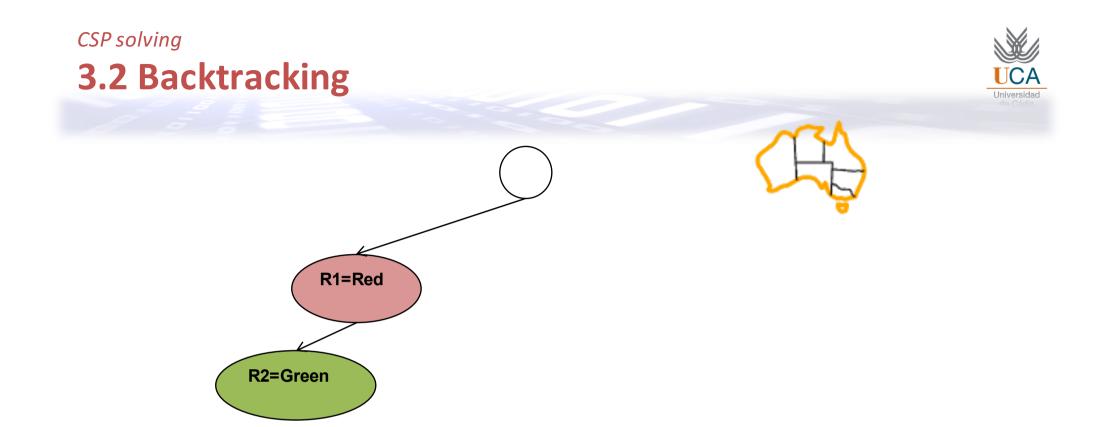
- FINITE DEPTH: the number of variables determines the solution depth
- CONMUTATIVITY: assignment order is irrelevant
 - Depth-first search for CSPs with single-variable assignments is called backtracking search
- CONTROL OF REPEATED STATES is unnecessary

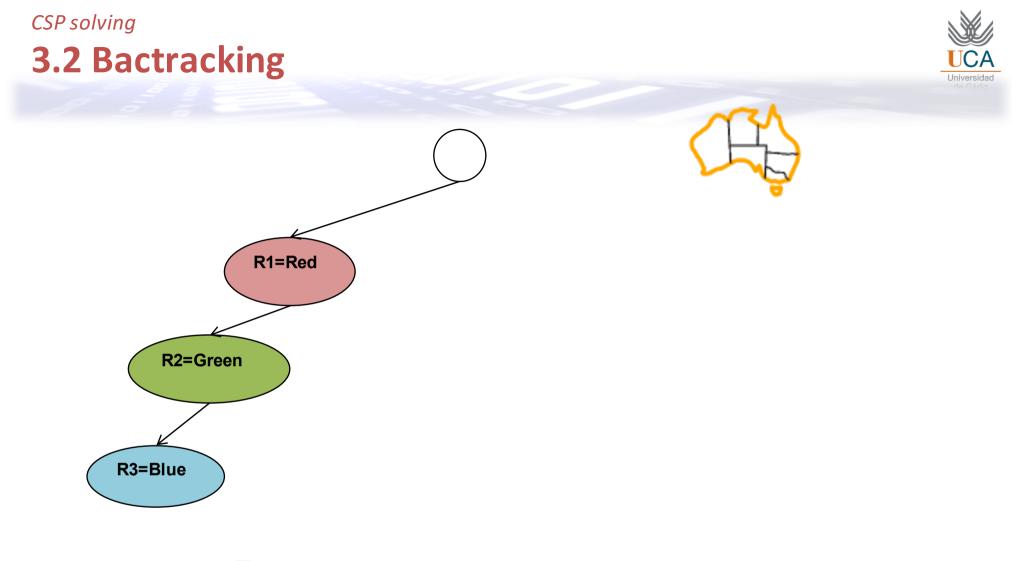
CSP solving 3.2 Backtracking

Special depth search ...

- Consider the variables in some order
- Pick an unassigned variable and give it a provisional value such that it is consistent with all of the constraints
 - If no such assignment can be made, we've reached a dead end and we need to backtrack to the previous variable
- Continue this process until a solution is found or all possible assignments have been exhausted







CSP solving Drawbacks of Backtracking

Advantages

Simple to implement

Intuitive approach of trial and error

Code size is usually small

Multiple function calls are expensive

Inefficient

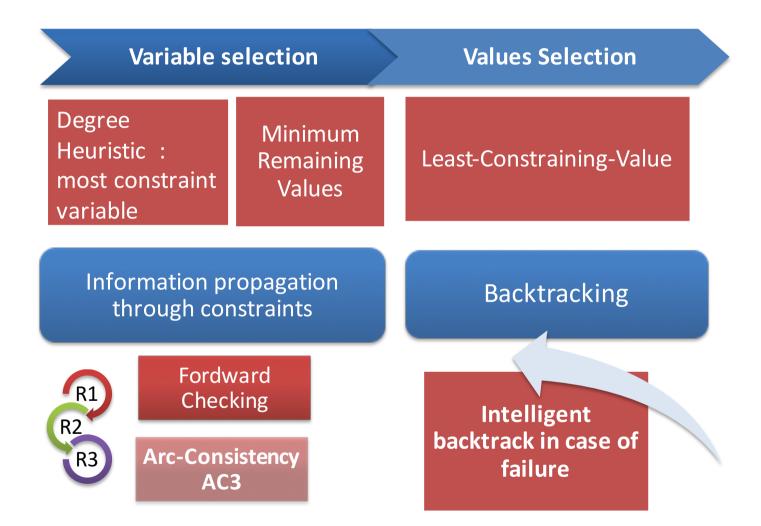
- there is lots of branching from one state
- explore areas of the search space that aren't likely to succeed

Disadvantages

CSP solving **3.2 Backtracking Algorithm**

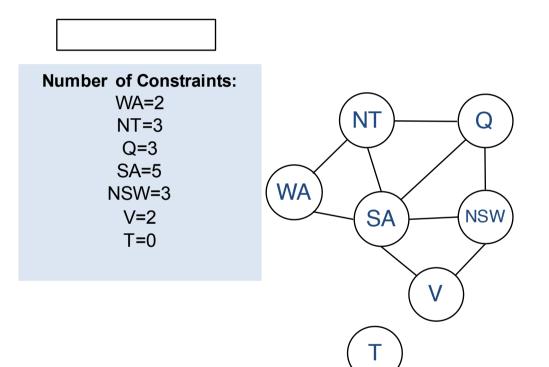
function [solution, domains] = backtracking(solution, domains) variable = **SELECT-UNASSIGNED-VARIABLE**(solution, domains); if Not empty(variable) valuesList **CONTER-DOMAIN-VALUES**(variable, domains); nValues <- length(valuesList); while Not Complete (solution) AND Not empty(values list) value ← next(values list) **if Consistent**(solution, variable, value) [solution, domains] **<** AssignValue(solution, domains, variable, value); if Not Complete(solution) [solution, domains] **Undo**(solution, domains, variable, value); end end end end end %bactracking

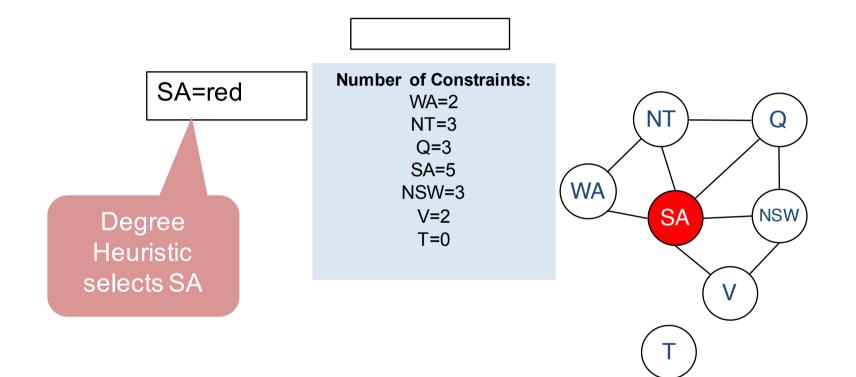
CSP solving 3.3 General purpose heuristics

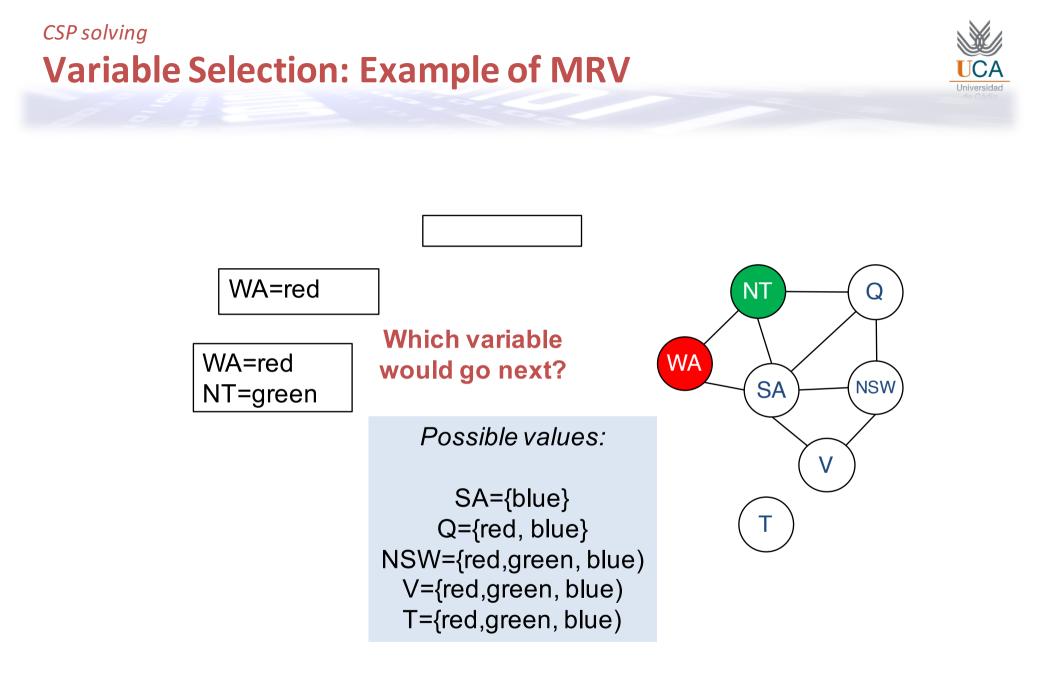


CSP solving Variable Selection: Example of Degree Heuristic

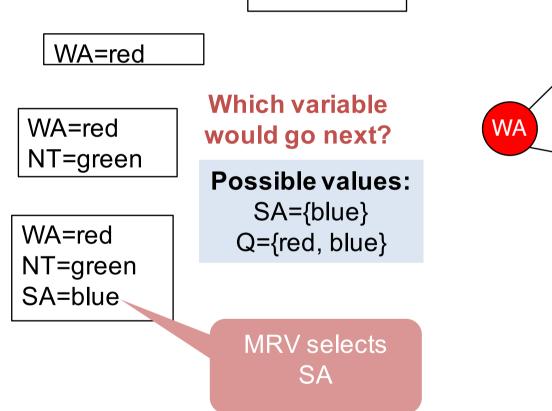
Wich variable would go first?

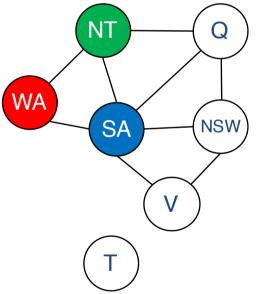






CSP solving Variable Selection: Example of MRV



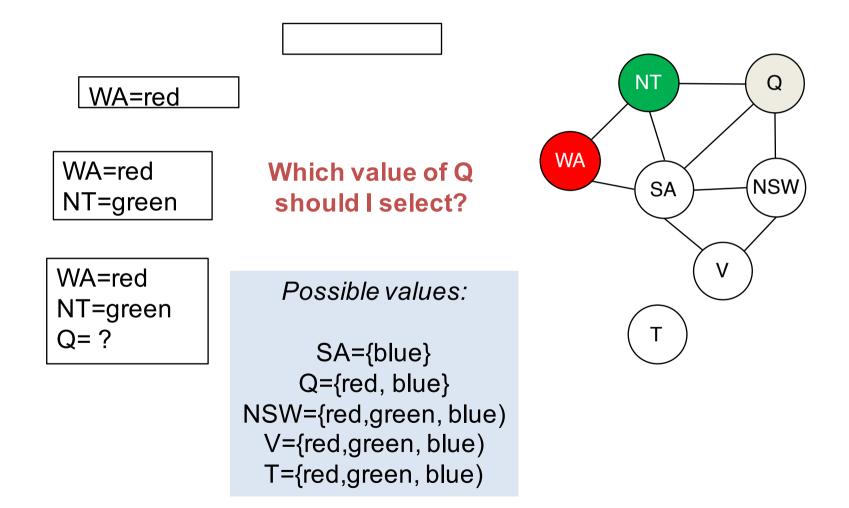


CSP solving A. Variable selection

Variable Selection var ← SELECT-UNASSIGNED-VARIABLE(solution, domains) selects the variable that is involved in the largest number of constraints of other unassigned variables Degree Heuristic: • useful as a tie-breaker or at the beginning of the search process Selects the variable with less legal values Minimum Remaining To increase the probability of pruning Values (MRV):

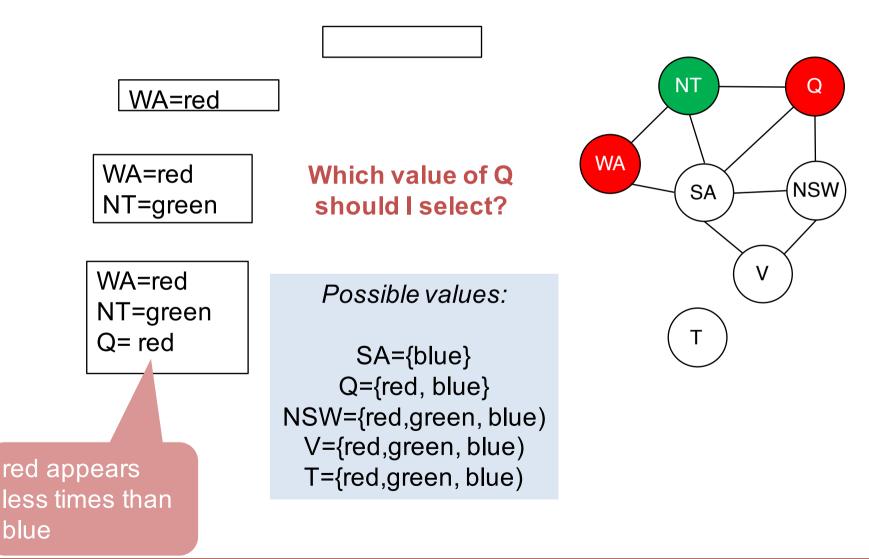
CSP solving Order of Values: Example of LCV

Assuming that **Q** is the next variable ...



CSP solving Order of Values: Example of LCV

Assuming that **Q** is the next variable ...

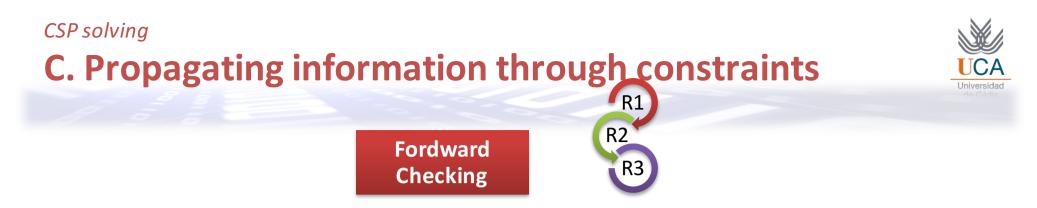


Once a variable has been selected, the algorithm must decide the order in which it will examine its values.

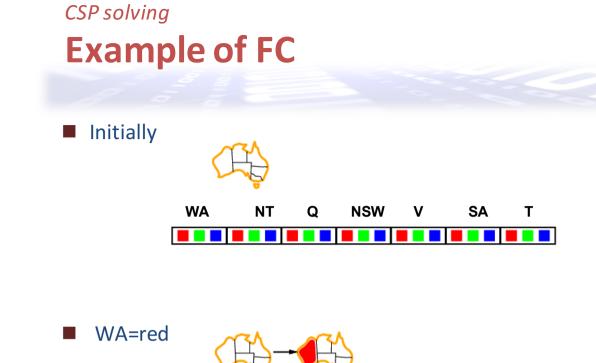
Order of values values_list ORDER-DOMAIN-VALUES (solution, domains) Least-Constraining-Value (LCV) Selects the value that appears in fewer constraints e.g., the most free value • Tries to leave as many options for the rest of the variables to be assigned

CSP solving **3.2 Backtracking Algorithm**

function [solution, domains] = backtracking(solution, domains) variable = **SELECT-UNASSIGNED-VARIABLE**(solution, domains); if Not empty(variable) valuesList **CONTER-DOMAIN-VALUES**(variable, domains); nValues <- length(valuesList); while Not Complete (solution) AND Not empty(values list) value ← next(values list) **if Consistent**(solution, variable, value) [solution, domains] **<** AssignValue(solution, domains, variable, value); if Not Complete(solution) [solution, domains] **Undo**(solution, domains, variable, value); end end end end end %bactracking



- When X is assigned a value ...
 - FC looks at each unassigned variable Y that is connected to X by a constraint and deletes from Y 's domain any value that is inconsistent with the value chosen for X
 - Each node in the search tree must contain the state and the list of possible values
 - MRV is an obvious partner of FC



Q

Red value is removed from NT and SA domains

NT

NSW

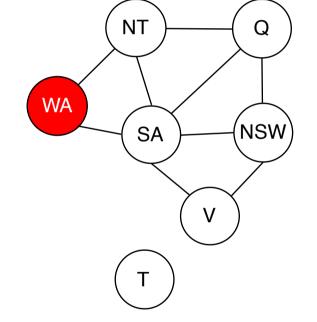
 V

SA

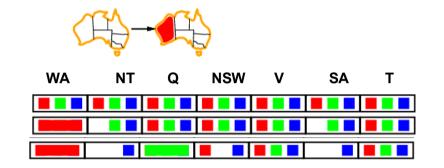
Т

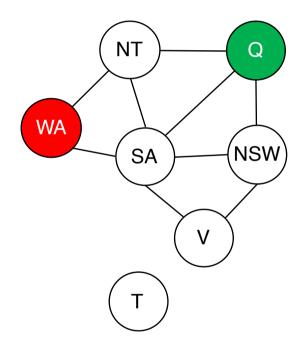
Ŷ

WA



■ WA=red Q=green

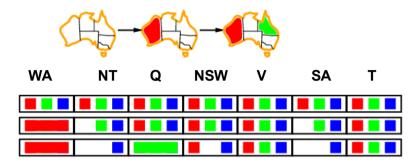




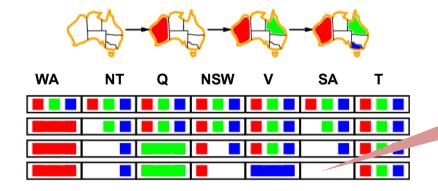
Universidad

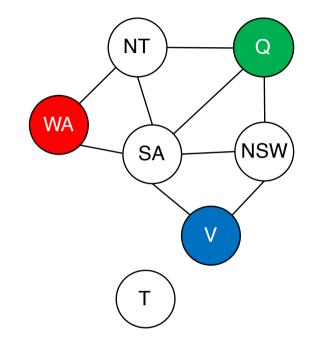
CSP solving Example of FC

■ WA=red Q=green



■ WA=red Q=green V=blue

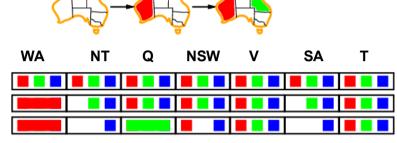




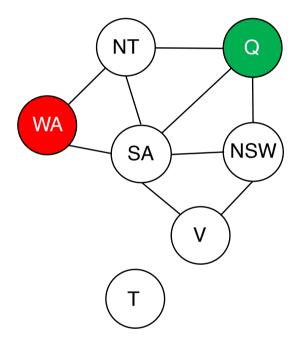
SA domain is

empty !!

LIMITATION: Although forward checking detects many inconsistencies, it does not detect all of them



NT and SA were both blue !!



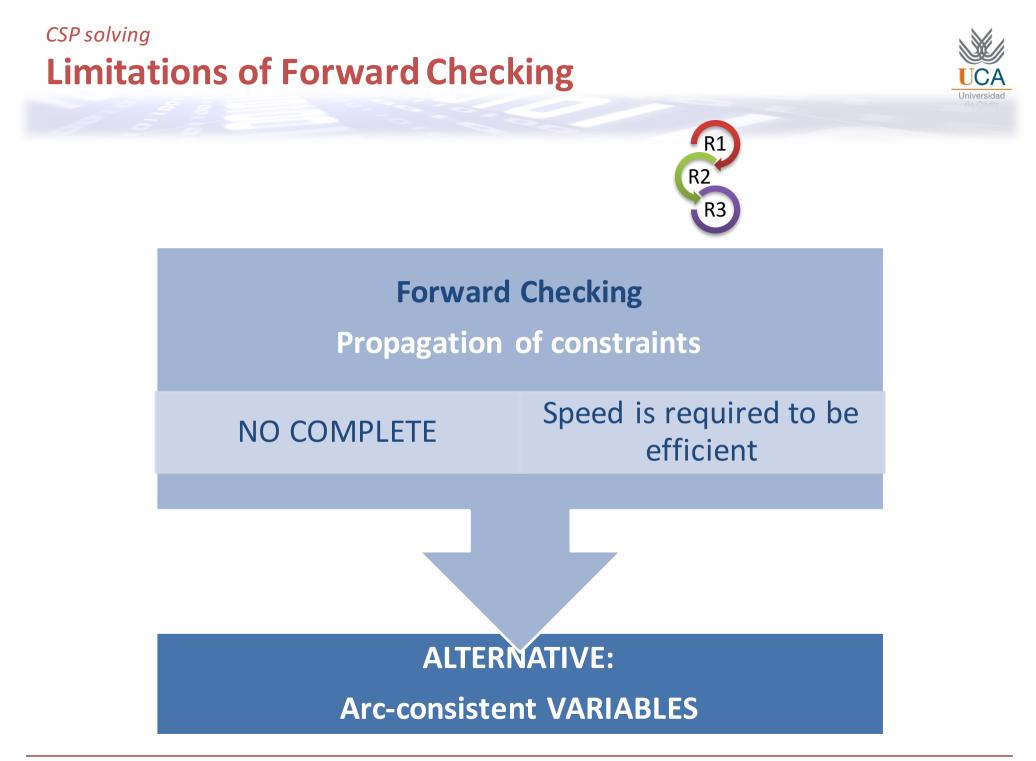
CSP solving Forward checking algorithm

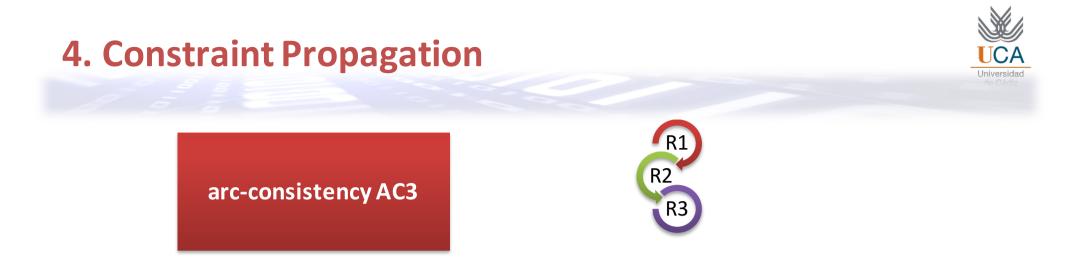
- Forward checking can be seen as the application of a simple step of arc-consistency between the variable that has been assigned a value and each of the variables that remain to be instantiated:
 - 1. Select xi.
 - 2. Assign $xi \leftarrow aj : aj \in Di$.
 - 3. REPEAT:
 - 1. forward-check:

Remove from the domains of the variables (*xi*+1.. *xn*), those values that are inconsistent with respect to the assignment (*xi*, *aj*), according to the set of constraints.

Increment i

- 4. UNTIL i>n
- 5. If there exists a unassigned variable, and its domain is empty then retract assignment *xi* ← *aj*. Do:
 - Try with other values of Di, go to step(2).
 - If Di is empty:
 - If i > 1, decrement i (try with previous variable) and go back to step (2).
 - If i = 1, exit (No Solution).





Arc-Consistent: when for each pair of variables (X, Y) and for each value x_i of D_x there exists a value y_j of D_y such as Constraints are satisfied

> Current domains must be consistent with all the constraints

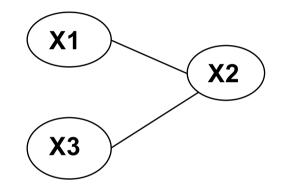
Constraint Propagation

4.1 Arc-consistency

- D1={1..10}
- D2={5..15}
- D3={8..15}

Constraints:

- X1>X2
- X2>X3

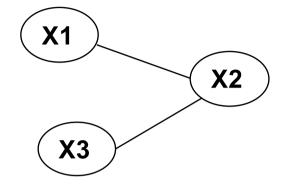


Constraint Propagation

4.1 Arc-consistency

D1={1..10} D2={5..15}

D3={8..15}



Constraint1: X1>X2

Constraint2: X2>X3

Before any assignment:

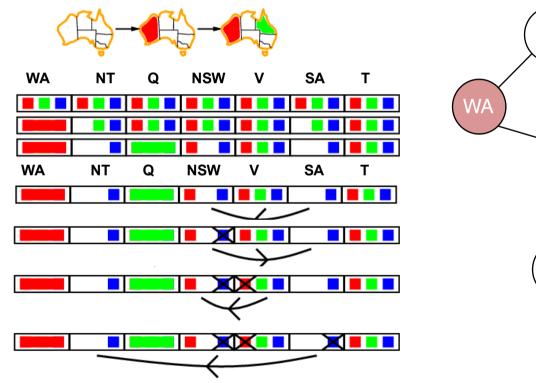
- 1. In order to satisfy Constraint1 and make Arc(1,2) a consistent arc,
 - D1 = {6..10} and D2 = {5..9}
- 2. To make Arc(2,3) consistent
 - D2={9} and D3={8}
- 3. Next iteration,
 - D1={10}, D2={9} and D3={8}
- 4. Each domain is now unique, solution has been reached

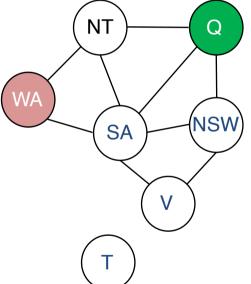
Constraint Satisfaction Problems 62

4.1 ARC-CONSISTENCY

(X Y) Is consistent if and only if:

- For each value x_i of X there exists some allowed value y_i
- WA=red Q=green





Constraint Propagation 4.2 AC3 Algorithm

Procedure (intuitive idea):

From initial domains:

Update domain in each step

Return a set of updated domains where all arcs are consistent

Domains update:

If an arc is inconsistent, try to remove from the distinguished variable those values that do not satisfy any constraint

Stop criteria

- All arcs are consistent
- Inconsistency: A domain is empty

Constraint Propagation 4.2 AC3 Algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables $\{X1, X2, ..., Xn\}$ local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do $(X_i, X_j) \leftarrow \text{Remove-First}(\text{queue})$ if Remove-Inconsistent-Values(Xi, Xj) then for each X_k in Neighbors[Xi] do add (Xk, Xi) to queue

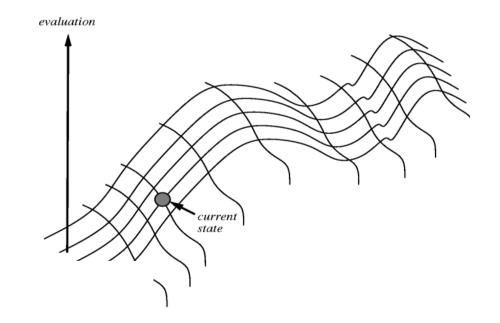
function Remove-Inconsistent-Values(X_i, X_i) returns true iff we remove a value removed \leftarrow false for each x in Domain[X_i] do if no value y in Domain[X_i] allows (x,y) to satisfy the constraint between Xi and Xj then delete x from Domain[Xi]; removed \leftarrow true return removed

Constraint Propagation 4.2 AC3 Algorithm

- From the application of AC3 we can end with:
 - An empty domain: no solution
 - Unique domain: a unique solution
 - At least a domain is not unique: more than one solution might exist
- AC3 can be used in combination with any other search strategy:
 - Backtracking and backjumping
 - Local search and heuristcs of minimum conflicts

5. Local or Hill Climbing Search

- Loop that continuously moves forward:
 - Increasing values (if the goal is to maximize the evaluation function)
 - Decreasing values (if the goal is to minimize the evaluation function)



Local Search 5.1 Local Search

For combinatorial optimization problems

- 1. Start with initial configuration
- 2. Repeatedly search neighborhood (Successors) and select the best neighbor as candidate
- **3**. Apply a cost function (or fitness function) and accept candidate if it is better than current
- 4. Stop if quality is sufficiently high, if no improvement can be found or after some fixed time
 - Candidate is always and only accepted if cost is lower than current configuration
 - Stop when no neighbor with lower cost (higher fitness) can be found

Local Search 5.1 Local or Hill-climbing Search

Successors(current)

 m=state with min(feval(Successors))

Continue the trace through states that decrease the evaluation function

IF feval(m) < feval(current)</pre>

• current=m

It ends when a peak is reached: where none neighbor has a lower value of feval

Local Search 5.3 Implementation

- 1. A method to generate initial configuration
- 2. A Successor function to generate new states
- 3. A Cost function
- 4. A Decision Criterion to select next candidates from the list of successors
- 5. A Stop Criterion

Local Search 5.3 Alternative: Beam Local Search

Universidad

- Begin with k random generated states
- Loop until the solution state is found
 - Generate the list of all the successors of the k States.
 - Select the k best states from this list

Local Search 5.4 Local Search for CSP

- **States:** They use a complete-state formulation (consistent or inconsistent)
- Initial State: random generated
- Final State: Solution to CSP
- Successors: usually works by changing the value of one variable at a time

Local Search Minimum Conflict Heuristics

- Select variable other than the last modified one that participates in more unsatisfied constraints in the state
- Select value that causes the least number of conflicts with other variables (Least Restricted Value)

Local Search 5.5 Local Search Main Features

UCA Universidad

When the path to the Solution is irrelevant:

- They keep only one State in memory: the current State
- They move only to the neighbouring nodes of the current node
- They are not systematic in the search
- They use little memory
- They can find reasonable solutions in large or infinite spaces of States
- They can get stuck in local maxima/minima

References

- Russell, S. y Norvig, P. Artificial Intelligence (a modern approach). Ch. 5: "Constraint Satisfaction Problems"
- Schalkoff, R.J. Intelligent Systems: Principles, Paradigms and Pragmatics. Ch. 4
- Poole, D.; Mackworth, A. y Goebel, R. Computational Intelligence (A Logical Approach) (Oxford University Press, 1998) "Constraint Satisfaction Problems"