

Unit 1. Constraint Satisfaction Problems

Activity 1. Backtracking and the Graph Colouring Problem

Watch the following video where you can find an explanation about the backtracking algorithm applied to a Graph Colouring Problem:

https://www.youtube.com/watch?v=miCYGGrTwFU

Answer the following questions after watching the video:

- 1. **n**: refers to the number of nodes (cities) and **m**?:
- 2. What does the content of the adjacency matrix represent?

n	0	1	2	3
0	1	1	0	1
1	1	1	1	1
2	0	1	1	1
3	1	1	1	1

3. Take a look at the code, what do the following variables represent? Link definitions with variables and constants:

a node to be coloured •	•	3	
every colour •	•	k	
the colour assignment for each node •			
a node to check if it is adjacent to other $ ullet $			
blue colour •	•	с	
green colour •	•	2	
red colour •	•	i	
the adjacency matrix •	•	1	

- 4. True or False:
 - **0** means that two nodes are connected
 - Nodes 0 and 2 are not connected
 - **k** is the node we're trying to colour
 - *return* breaks the recursion
 - A node is adjacent to itself
 - *isSafe* function checks if the node *k* is adjacent to the node *i* that is being checked in the loop and and whether the colour *c* has been already assigned
 - Eventually is synonym of Finally
 - *Edges* are the same as Arcs between nodes
 - Edges are vertices
- 5. Explain the meaning of the following sentence, with your own words.

```
If G[k][i]==1 && c==x[i]
return false
```

6. Assuming the following state of the problem, give a trace of the execution of the backtracking code:

x=[2 3 0 0] k=3 graph(k)

- 7. Write this code in Matlab/Octave and check that everything is ok **debugging** the program.
- 8. Improve the code, removing return instructions and changing loops when needed. Use specific sentences of Matlab/Octave such as *all, find, etc.*