
Backtracking & Graph Colouring Activity – CSP 1/2

	
	

Intelligent	Systems		
Computing	Engineering	Degree	
elisa.guerrero@uca.es	
Departamento	Ingeniería	Informática	
	

Unit	1.	Constraint	Satisfaction	
Problems	

 	

Activity 1. Backtracking and the Graph Colouring Problem
	
Watch	 the	 following	 video	 where	 you	 can	 find	 an	 explanation	 about	 the	 backtracking	
algorithm	applied	to	a	Graph	Colouring	Problem:	

	

	

https://www.youtube.com/watch?v=miCYGGrTwFU		

	

Answer	the	following	questions	after	watching	the	video:	
	

1. n:	refers	to	the	number	of	nodes	(cities)	and	m?:		
2. What	does	the	content	of	the	adjacency	matrix	represent?	

	
	

3. Take	a	look	at	the	code,	what	do	the	following	variables	represent?	Link	definitions	
with	variables	and	constants:	
	
a	node	to	be	coloured						�				 • 3	

every	colour																						�										 • k	

the	colour	assignment	for	each	node					�						 • x	

a	node	to	check	if	it	is	adjacent	to	other		�	 • G	

blue	colour													�																					 • c	

green	colour										�																				 • 2	

red	colour				�	 • i	

the	adjacency	matrix				�	 • 1	

	
	
	
	
	

Backtracking & Graph Colouring Activity – CSP 2/2

4. True	or	False:	
• 0	means	that	two	nodes	are	connected	
• Nodes	0	and	2	are	not	connected	
• k	is	the	node	we’re	trying	to	colour	
• return	breaks	the	recursion	
• A	node	is	adjacent	to	itself	
• isSafe	function	checks	if	the	node	k	is	adjacent	to	the	node	i	that	is	being	

checked	in	the	loop	and	and	whether	the	colour	c	has	been	already	assigned	
• Eventually	is	synonym	of	Finally	
• Edges	are	the	same	as	Arcs	between	nodes	
• Edges	are	vertices	

	
5. Explain	the	meaning	of	the	following	sentence,	with	your	own	words.		

If G[k][i]==1 && c==x[i]
 return false

6. Assuming	the	following	state	of	the	problem,	give	a	trace	of	the	execution	of	the	
backtracking	code:	
x=[2		3		0		0]	
k=3	
graph(k)	
	
	
	
	
	
	
	
	

	
7. Write	this	code	in	Matlab/Octave	and	check	that	everything	is	ok	debugging	the	

program.	
8. Improve	the	code,	removing	return	instructions	and	changing	loops	when	needed.	Use	

specific	sentences	of	Matlab/Octave	such	as	all,	find,	etc.	
	

