
Unit 2
Trajectory-based
Metaheuristics

Dra.	Elisa	Guerrero		Vázquez
elisa.guerrero@uca.es

University of	Cadiz - Spain



Trajectory-based Metaheuristics 2/29

Contents

1. Introduction
1. Classical	Methods	for	Combinatorial	optimization	problems
2. Metaheuristics

2. Annealing	Search
3. Tabu Search



Trajectory-based Metaheuristics 3/29

Introduction

1.1	Local	Search

For	combinatorial	optimization	problems
1. Start	with	initial	configuration
2. Repeatedly	 search	neighborhood	 (Successors)	and	select	the	

best	neighbor	as	candidate
3. Apply	a	cost	function	(or	fitness	function)	and	accept	candidate	

if	it	is	better	than	current
4. Stop	if	quality	is	sufficiently	high,	if	no	improvement	 can	be	

found	or	after	some	fixed	time

Ø Candidate	 is	always	and	only	accepted	if	cost	is	lower	
than	current	configuration

Ø Stop	when	no	neighbor	with	lower	cost	(higher	
fitness)	can	be	found



Trajectory-based Metaheuristics 4/29

Introduction	

1.1	Implementation

1. A	method	to	generate	 initial	configuration
2. A	Successor	function	to	generate	 	new	states
3. A	Cost	function
4. A	Decision	Criterion	to	select	next	candidates	from	the	list	of	

successors
5. A	Stop	Criterion



Trajectory-based Metaheuristics 5/29

Introduction

1.1	Classical search algorithms

n The	cost	of	finding	the	optimal	solution	can	be	very	high	
(Backtracking,	AC3,	etc.)

n They	do	not	guarantee	finding	the	optimal	solution:	high	
probability	of	falling	in	local	max/minimal	(Local	Search)

ðAlternative:	Metaheuristics	that	allow	escaping	from	local	optima



Trajectory-based Metaheuristics 6/29

Introduction

1.2	Improving	local	search

n Repeat	algorithm	many	times	with	different	initial	
configurations

n Use	information	gathered	 in	previous	runs

n Use	a	more	complex	Successor	Function	to	jump	out	of	local	
optimum

n Use	a	more	complex	Decision	Criterion	that	sometimes	could	
accept	other	alternative	solutions	(even	worse	than	current)



Trajectory-based Metaheuristics 7/29

Introduction	

1.2	Metaheuristics

Metaheuristics are		high-level	search	strategies	that	may	provide	a	
sufficiently	good	solution	to	an optimization	problem



Trajectory-based Metaheuristics 8/29

Introduction	

1.2	Metaheuristics

n The	goal	is	to	efficiently	explore	the	search	space	in	order	to	
find	(near)optimal	solutions.	

n Metaheuristic algorithms	are	approximate	and	usually	non-
deterministic.	

n They	may	incorporate	mechanisms	to	avoid	getting	trapped	in	
confined	areas	of	the	search	space.	

n Metaheuristics are	not	problem-specific.	
n Metaheuristics may	make	use	of	domain-specific	knowledge



Trajectory-based Metaheuristics 9/29

Introduction	

1.2	TrajectorysearchMethods

Describe	the trajectory in	the search space through the
execution
n Simulated Annealing
n Tabu Search

Goal

Local Optima
Global Optima



Trajectory-based Metaheuristics 10/29

2.	Simulated	Annealing

n Metaheuristic search method based on local	
search methods

n Based	upon	the	analogy with	the	simulation	of	the	
annealing	of	solids

n Do	sometimes	accept	candidates	with	higher	cost to	
escape	from	local	optimum

100º

-100º



Trajectory-based Metaheuristics 11/29

Simulated	Annealing	

2.1	Annealing	Process

n Raising	the	temperature	up to	a	very	high	level	(melting	
temperature,	 for	example),	 the	atoms	have	a	higher	
energy	state	and	a	high	possibility	to	re-arrange	the	
crystalline structure.

n Cooling	down	slowly,	the	atoms	have	a	lower	and	lower	
energy	state and	a	smaller	and	smaller	possibility	to	re-
arrange the	crystalline	structure.

100º

-100º



Trajectory-based Metaheuristics 12/29

Simulated	Annealing	

2.2	SA	vs.	Local	Search

In	comparison	with	Local	Search
n SA	only	evaluates	some	successors

n If	the	New	state	is	better	then	is	taken	
n If	the	New	state	is	worse	a	likelihood	function	will	decide	if	this	state	is	
accepted

n At the beginning this likelihood is very high but decreases as
the search progresses:
n Temperature is related to this likelihood.
n At the beginning T is very high, and the likelihood of considering

different options in the state space is very high, but as the search
progresses T is going down, meaning that the process is converging to
the optimal solution, then bad states are not very likely to be
considered.



Problemas de Satisfacción de Restricciones 13/17

AlgorithmSA
T=upper limit
Current=	random initial state
while (T	does not reach lower limit)	
New	=	random Successor from Current
if New	improves Current

Current=New
else

Accept New	with probability P
end_if
cool(T)

end_while

ReturnCurrent
End SA

Simulated	Annealing	

2.3	SA	Algorithm	v1



Trajectory-based Metaheuristics 14/29

Simulated	Annealing	

2.4	SA:	Probability Function

n The	probability	of	updating	the	state	depends	on	the	extent	 to	
which	one	solution	is	worse	than	the	other:
n ΛΕ is	the	difference	between	 cost	values	of	the	current	and	
new	states

n T:	temperature	 of	the	system	that	is	progressively	decreasing

**	when	we	are	trying	minimizing	the	cost	function

𝑝 = exp
−∆𝐸
𝑇

∆𝐸 = 𝑓𝑐𝑜𝑠𝑡 𝑁𝑒𝑤 − 𝑓𝑐𝑜𝑠𝑡(𝐶𝑢𝑟𝑟𝑒𝑛𝑡)



Trajectory-based Metaheuristics 15/29

Simulated	Annealing	

2.5	Influence of	T

n Suppose	a	generic	problem	in	which	the	values	returned	 by	the	
cost	functions	of	the	current	state	and	the	new	successor	are	as	
follows:	

fcost(Current)=15	
fcost(New)=19

T P
1000
100
50
30
10
1

∆𝐸 = 𝑓𝑐𝑜𝑠𝑡 𝑁𝑒𝑤 − 𝑓𝑐𝑜𝑠𝑡(𝐶𝑢𝑟𝑟𝑒𝑛𝑡)

𝑝 = exp
−∆𝐸
𝑇



Trajectory-based Metaheuristics 16/29

2.5	Influence of	T

n Suppose a	generic problem in	which the values returned by the
cost functions of	the current state and	the new	successor are	as	
follows:	

fcost(Current)=15	
fcost(New)=19

∆𝐸 = 𝑓𝑐𝑜𝑠𝑡 𝑁𝑒𝑤 − 𝑓𝑐𝑜𝑠𝑡(𝐶𝑢𝑟𝑟𝑒𝑛𝑡)

𝑝 = exp
−∆𝐸
𝑇

T P
1000 0.9960
100 0.9608
50 0.9231
30 0.8752
10 0.6703
1 0.0183When T	approaches zero,	the algorithm will

only accept states with a	better evaluation
function than the current state



Problemas de Satisfacción de Restricciones 17/17

AlgorithmSA
Initialize T,	T_min
Current=	random state
while (T>T_min)	&	(No	Solution)	
New	=	Random Successor from Current
deltaE =	fcost(New)	- fcost(Current)
if (deltaE<0)	 		%%	if candidate is better is accepted directly

Current=New
else

p=exp(-deltaE/T)
if p>rand(0,	1)		%%	accept solution randomly

Current=New
end_if

end_if
cool(T)

end_while
ReturnCurrent

Simulated	Annealing	

2.6	SA	Algorithm v2



Problemas de Satisfacción de Restricciones 18/17

n If		T	is	very	high,	convergence	 is	very	slow
n If		T	is	very	low,	procedure	will	not	converge
n T_min can	be	replaced	by	the	maximum	number	of	iterations
n The	function	cool(T)	decreases	in	each	iteration

n Depends	upon	the	problem
n Lineal	decreasing	is	the	most	common
n Other	options:	exponential	decreasing,	Cauchy,	etc.

Simulated	Annealing	

2.7	Parameter	Analysis



Trajectory-based Metaheuristics 19/29

Simulated	Annealing	

2.8	Performance	of	Simulated	Annealing

n SA	is	a	general	solution	method	that	is	easily	applicable	to	a	large	
number	of	problems

n "Tuning"	of	the	parameters	 (initial	T,	decrement	of	T,	stop	
criterion)	is	relatively	easy

n Generally	the	quality	of	the	results	of	SA	is	good,	although	it	can	
take	a	lot	of	time



Trajectory-based Metaheuristics 20/29

Simulated	Annealing	

2.8	Performance	of	Simulated	Annealing

n Results	are	generally	not	reproducible:	another	run	can	give	a	
different	result

n SA	can	leave	an	optimal	solution	and	not	find	it	again
(so	try	to	remember	the	best	solution	found	so	far)

n Proven	to	find	the	optimum	under	certain	conditions;	one	of	these	
conditions	is	that	you	must	run	forever



Trajectory-based Metaheuristics 21/29

3.	Tabu Search

Tabu states	are	states	already	
visited	or	actions	performed	
recently.

Metaheuristic search method
based on local	search methods

Tabu states	are	introduced	to	discourage	the	search	from	
coming	back	to	previously-visited	 solutions.



Trajectory-based Metaheuristics 22/29

Tabu Search

3.1	Basis

n In	each	iteration
n the	best	Successor	(no	Tabu)	is	selected	

n Current	 is	included	into	the	Tabu list	for	a	certain	number	
of	iterations

n If	a	Successor	is	Tabu,	then	”avoid”	 it	and	take	the	next	one



Trajectory-based Metaheuristics 23/29

Tabu Search

3.2	Main loop

n Runs until an external completion condition is satisfied
n The generated Successor could be	worse than Current state
n Adaptive memory:	a	list of	Tabu states is updated,	 the undesirable

states
n Tenure:	number of	iterations that will keep a	state on the Tabu list



Trajectory-based Metaheuristics 24/29

Tabu Search

3.3	Aspiration Criterion

n Some Successor,	even being Tabu,	might offer an exceptionally
good solution.	

n The aspiration criterion allows you to	check whether a	Tabu state
is better than the best state,	and	if so,	to	select it,	by updating the
corresponding Tabu list.



Trajectory-based Metaheuristics 25/29

Tabu Search

3.4	Algorithm v1
1. Generate the ordered list of	Succesors from Current
2. Select the first (best)	one as	candidate

a. Remove Current from Successors list
Aspiration criterion
2.1	If the selected candidate is best than the Better one

a. Select this state as	Current
b. Include Current in	the Tabu list
c. and	go to	1

Tabu List
2.2	If the selected candidate is not best than the Better one

n AND	it is NO	Tabu:	
a. select this state as	Current,	
b. Include Current in	the Tabu list
c. and	go to	step 1
n AND	it is TABU:	
a. go to	step 2



Trajectory-based Metaheuristics 26/29

Tabu Search

3.5	Stopping Criteria

n Number	of	iterations
n Reach	an	acceptable	solution	
n Be	stuck	in	a	local	optimum
n There	are	no	alternatives	 for	a	Current	state	(Successors	are	worse	

and	all	of	them	are	in	the	Tabu list)



Trajectory-based Metaheuristics 27/29

Tabu Search

3.6	Algorithm v2
Algorithm	Tabu_Search

Current=	random	or	initial	 state
Best=Current
Initial	values	for	tabu	list,	 tenure,	iteration	counter	and	max	number	of	iterations
While	<stop	conditions>

Obtain	the	list	of	succesor	states	 ordered	by	cost	function		
While	<successor	list	not	empty	and	not	a	new	current	state	 is	generated	>

New=Next(Sucessor	list)
if		Cost(New)	<	Cost(Best)	%%	Tabu	or	not	tabu	but	improves	the	best	

Current=Sucessor
Best=Current

elsif	New	is	Not	Tabu
Current=Sucessor

else	
Take	next	sucessor	from	the	ordered	list	of	sucessors

endif
Update	tabu	list	 (decreasing	tenure	and	adding	new	tabu	state)

endWhile
Update	rest	of	variables

endWhile
end



Trajectory-based Metaheuristics 28/29

4.	Conclusions

Both	strategies:

n Use	Metaheuristics	to	guide	the	search	and	avoid	local	optima
n Are	based	on	one	single	solution	(vs.	poblaciones)
n Are	trajectory-based	 strategies:

n Iterative	procedure	
n Successor	function	must	be	implemented



Trajectory-based Metaheuristics 29/29

References

n Russell,	S.	y	Norvig,	P.	Inteligencia	Artificial	(un	enfoque		moderno)	
(Pearson	Educación,	2004).	Segunda	edición.	Cap.	5:	“Problemas	
de	Satisfacción	de	Restricciones”

n García	Serrano,	A.	Inteligencia	artificial.	Fundamentos,	práctica	y	
aplicaciones	(RC	Libros,	2012)

n Michalewicz,	Z.	y	Fogel	D.	How	to	solve	it.	Modern	Heuristics	
(Springer,	2004)

n Tim	Jones,	J.		Artificial	Intelligence.	A	systems	approach.	
Computer	Sciences	Series.	 (Jones	&	Bartlett	publishers,	2008)


