

Unit 2. Metaheuristics: single solution approaches

Example of a SAT problem resolution

SAT problems aim at finding the best assignment for a number of variables in order to minimize C(x) function, restricted to some constraints which can penalize the potential solutions.

Let's assume the following Sat problem with 5 variables:

F(x)=20 x₁ + 25 x₂ - 30 x₃ - 45 x₄ + 40 x₅ where $x_j = \{0, 1\}, j = 1,...,5$

Constraints:

 $x_1 + x_2 - x_3 + x_4 + x_5 >= 1$

 $x_1 + x_2 - x_4 + 2x_5 >= 2$

 $-x_2 + x_4 + x_5 \le 1$

 $x_2 + x_3 + x_5 \le 2$

Penalization: Each constraint violation costs:

- 70 (per each) for the two first constraints
- 100 (per each) for the two last constraints

The final cost to minimize is:

C(x) = F(x) + Penalization(x)

Actions: Swap the value of each variable (0 or 1)

- There exists a taboo list per each variable of the function.
- The taboo tenure is set to 4 iterations
- Best solution found until now is kept

3 SAT Resolution using Taboo Search

From this initial state: x^0 (1, 0, 0, 0, 1) where the final cost is C(x^0)= 60

Initial solution: $x^0 = (1, 0, 0, 0, 1), c(x^0) = 60$ Taboo list = (0, 0, 0, 0, 0)Initially: Best solution: $x^0 = (1, 0, 0, 0, 1), c(x^0)=60$

Iteration 1: Current state: $x^0(1, 0, 0, 0, 1)$

Successor states obtained from the current state

$m_1(x^0) : x_1 = 0$	$\mathbf{x} = (0,0,0,0,1)$	=>	C(x) = 40
$m_2(x^0): x_2=1$	x = (1,1,0,0,1)	=>	C(x)= 85
$m_3(x^0): x_3=1$	x = (1,0,1,0,1)	=>	C(x)= 30*
$m_4(x^0):x_4=1$	x = (1,0,0,1,1)	=>	C(x)= 15 +100=115
$m_5(x^0):x_5=0$	$\mathbf{x} = (1,0,0,0,0)$	=>	C(x)=20+70=90

- The best successor is $x^{1}(1, 0, 1, 0, 1)$, $C(x^{1}) = 30$
- •
- This option x^1 is not taboo: Current solution: $x = (1, 0, 1, 0, 1), C(x^1) = 30$
 - Taboo list = (0 0 4 0 0) Keep the taboo tenure for variable 3 Best solution: $x^1 = (1,0,1,0,1)$, $C(x^1) = 30$

Iteration 2: $x^1 = (1,0,1,0,1)$

Successor states obtained from the current state